无论是传统的多细胞转录组测序(bulk RNA-seq)还是单细胞转录组测序(scRNA-seq),差异表达分析(differential expression analysis)是比较两组不同样本基因表达异同的基本方法,可获得一组样本相对于另一组样本表达显著上调(up-regulated)和下调的基因(down-regulated),从而可进一步研究这些差异表达基因的功能,包括富集的通路(pathway)或生物学过程(biological process)。由于单细胞测序技术的局限性,单细胞测序数据通常具有高噪音,有较高的dropout问题,即很多低表达或中度表达的基因无法有效检测到。所以,以前针对传统多细胞转录组测序数据开发的差异表达检测方法或软件不一定完全适用于单细胞测序数据。若想比较不同细胞亚型或不同条件下的细胞表达差异时,为了能得到可靠的结果,需要选定一个好的差异表达分析方法(微信公众号:AIPuFuBio)。
近年来,有不少专门针对单细胞转录组测序数据的差异表达分析方法相继被开发出来,如MAST (Finak et al., 2015)、SCDE (Kharchenko et al., 2014)、 DEsingle (Miao et al., 2018)、 Census (Qiu et al., 2017)、 BCseq (Chen and Zheng, 2018)等。具体可以见下表所示:
红线上方是专门针对单细胞测序数据开发的差异表达分析软件或R包,红色下方是针对bulk转录组数据开发的软件或R包

本文总结了单细胞测序数据的差异表达分析方法,包括SCDE、DEsingle等,探讨了针对单细胞测序数据的专用软件与传统多细胞分析方法的优缺点。研究发现,DEsingle和SigEMD在灵敏性和准确性间取得较好平衡。建议使用专门针对单细胞测序开发的软件进行差异表达分析。
最低0.47元/天 解锁文章
376

被折叠的 条评论
为什么被折叠?



