点击蓝字

关注我们
AI TIME欢迎每一位AI爱好者的加入!
作为机器学习的一个基础的方向和问题,泛化性一直是学术研究热点。同时站在应用视角来说,一个缺乏泛化性的模型是很难广泛应用到复杂的现实场景中的。考虑到语言本身的特殊性,如果从自然语言处理的视角,泛化性会有哪些特殊的含义?当前的学界研究热点又在哪里?未来又会有哪些趋势?
2022年2月26号,AI TIME组织了Ph.D. Debate第九期,题为“浅谈自然语言处理中的泛化性”的研讨活动,特别邀请了来自北航与微软亚洲研究院联合培养的刘乾、约翰霍普金斯大学的陈耘墨、剑桥大学的刘方宇以及香港大学的杜文宇作为嘉宾,由鼎富智能科技有限公司的算法研发部总监兼深度学习实验室总监李健铨担任主持人。
1
自然语言处理中泛化性指的是什么?
泛化性有着什么样的意义?
鉴于广义上泛化性的覆盖面非常广,同时考虑到语言本身的特殊性,嘉宾们介绍了在自然语言处理中常见的四类泛化性,分别是组合泛化性,跨领域泛化性,跨语言泛化性和跨任务泛化性。
首先杜文宇介绍了第一类泛化性,组合泛化性。语言复杂多样就体现在语言是由固定数目的词义原子之间的组合,而
这篇博客讨论了自然语言处理(NLP)中泛化性的四种类型:组合泛化性、跨领域泛化性、跨语言泛化性和跨任务泛化性,并介绍了学界的研究热点和未来趋势。嘉宾们探讨了如何在NLP模型中提升泛化性,以及在多模态和跨语言场景下面临的挑战。
最低0.47元/天 解锁文章
91

被折叠的 条评论
为什么被折叠?



