一、引言
随着机器学习(ML)在各个领域的广泛应用,模型的复杂度不断增加,如深度神经网络等黑盒模型逐渐成为主流。这些模型虽然具有很高的预测性能,但其内部的决策机制往往难以理解,导致模型的透明度和可解释性不足。特别是在高风险的应用场景,如医疗诊断、金融评估和司法系统,缺乏解释的模型可能导致用户对结果产生质疑。因此,机器学习模型的可解释性问题越来越受到关注。
二、可解释性的类型
可解释性类型分为2种,一种是全局可解释性,另一种是局部可解释性。
1、全局可解释性
在机器学习中,全局可解释性指的是对模型整体行为的理解和解释能力,即如何从全局角度解释模型的决策过程和预测方式。与局部可解释性(关注单个预测或局部行为)不同,全局可解释性提供了对模型在不同输入情况下的广泛理解。以下是一些常见的全局可解释性方法:
- 特征重要性(Feature Importance)
特征重要性衡量每个输入特征对模型预测的整体贡献。例如,线性回归模型可以通过计算各特征的权重来确定其重要性。通过这种方式,用户可以看到哪些特征对模型的整体预测最为关键。特征重要性示例如下图所示:
- SHAP值(SHapley Additive exPlanations)
SHAP是一种基于博弈论的方法,它为每个特征分配一个“贡献值”,表示该特征在所有可能组合中的平均贡献。SHAP提供了全局可解释性,通过汇总各个特征的SHAP值,可以了解每个特征在模型中对整体预测的影响。宏观特征重要性SHAP值示例图如下所示: