可解释性机器学习

一、引言

        随着机器学习(ML)在各个领域的广泛应用,模型的复杂度不断增加,如深度神经网络等黑盒模型逐渐成为主流。这些模型虽然具有很高的预测性能,但其内部的决策机制往往难以理解,导致模型的透明度和可解释性不足。特别是在高风险的应用场景,如医疗诊断、金融评估和司法系统,缺乏解释的模型可能导致用户对结果产生质疑。因此,机器学习模型的可解释性问题越来越受到关注。

二、可解释性的类型

可解释性类型分为2种,一种是全局可解释性,另一种是局部可解释性。

1、全局可解释性

        在机器学习中,全局可解释性指的是对模型整体行为的理解和解释能力,即如何从全局角度解释模型的决策过程和预测方式。与局部可解释性(关注单个预测或局部行为)不同,全局可解释性提供了对模型在不同输入情况下的广泛理解。以下是一些常见的全局可解释性方法:

  • 特征重要性(Feature Importance)

        特征重要性衡量每个输入特征对模型预测的整体贡献。例如,线性回归模型可以通过计算各特征的权重来确定其重要性。通过这种方式,用户可以看到哪些特征对模型的整体预测最为关键。特征重要性示例如下图所示:

  • SHAP值(SHapley Additive exPlanations)

        SHAP是一种基于博弈论的方法,它为每个特征分配一个“贡献值”,表示该特征在所有可能组合中的平均贡献。SHAP提供了全局可解释性,通过汇总各个特征的SHAP值,可以了解每个特征在模型中对整体预测的影响。宏观特征重要性SHAP值示例图如下所示:

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值