大模型日报|7 篇必读的大模型论文

在这里插入图片描述

大家好,今日必读的大模型论文来啦!

1.OpenAI 最新研究:提高语言模型输出的可读性

提高大语言模型(LLM)输出结果可信度的方法之一,是为其提供清晰且易于检查的推理支持,即可读性。

来自 OpenAI 的研究团队在解决小学数学问题的背景下研究了可读性,结果表明,只为答案正确性而优化思维链解决方案会降低可读性。

为了减少可读性的损失,他们从 Prover-Verifier Game 中得到启发,提出了一种训练算法。这种算法通过迭代训练小型验证者来预测解的正确性,“乐于助人”(helpful)的证明者会给出验证者接受的正确解,而 “卑鄙”(sneaky)的证明者会给出愚弄验证者的错误解。

他们发现,在训练过程中,“乐于助人”证明者的准确性和验证者对对抗性攻击的鲁棒性都会提高。此外,他们还证明,可读性训练可以转移到负责验证解决方案正确性的时间有限的人类身上。在 LLM 训练过程中,人类的准确性在检查“乐于助人”证明者的解决方案时会提高,而在检查“卑鄙””证明者的解决方案时会降低。

因此,通过小型验证者进行可验证性训练是提高输出可读性的可行技术。研究结果表明,针对小型验证者的可读性训练是提高 LLM 对人类可读性的实用途径,因此有助于超人模型的对齐。

2.VD3D:首个基于 transformer 的视频扩散模型相机控制

当前的文本到视频合成模型展示了从文本描述生成连贯、逼真的复杂视频的能力。然而,大多数现有模型缺乏对相机运动的细粒度控制,而这对于内容创作、视觉效果和 3D 视觉等下游应用至关重要。

最近,一些新方法展示了生成具有可控相机姿态的视频的能力——这些技术利用了预训练的基于 U-Net 的扩散模型。然而,对于基于 transformer 的新型视频扩散模型(可联合处理空间和时间信息),现有方法均无法实现摄像机控制。

为此,多伦多大学以及 Snap 研究团队提出使用一种类似 ControlNet 的调控机制来控制视频 transformer 进行 3D 相机控制,该机制结合了基于 Plucker 坐标的时空相机嵌入。在对 RealEstate10K 数据集进行微调后,该方法在可控视频生成方面达到了 SOTA。

这项工作首次实现了对基于 transformer 的视频扩散模型进行相机控制。

论文链接:
https://arxiv.org/abs/2407.12781
项目地址:
https://snap-research.github.io/vd3d/

3.说“不”的艺术:语言模型不服从的范围应当扩大

聊天型语言模型的设计初衷是提供帮助,但它们不应对每个用户请求都予以服从。虽然大多数现有研究主要关注拒绝“不安全”的查询,但艾伦人工智能研究所的研究团服及其合作者认为,不服从的范围应当扩大。

他们介绍了一种全面的上下文不服从分类法,描述了模型在何时以及如何不应服从用户请求。该分类法涵盖了广泛的类别,包括不完整的、无支持的、不确定的以及人性化的请求(除了不安全的请求之外)。

为了测试语言模型的不服从能力,研究团队使用这一分类法开发了一个包含 1000 个不服从提示的新评估套件。研究团队发现,大多数现有模型在某些先前未充分研究的类别中表现出显著的高服从率,例如 GPT-4 错误地服从了多达 30% 的请求。

为了解决这些问题,研究团队探索了使用一个合成生成的请求和预期不服从响应训练集的不同训练策略。实验表明,尽管直接微调已指令微调的模型可能导致过度拒绝和整体能力的下降,使用诸如 LoRa(低秩适配器)等参数高效的方法有助于在适当不服从和其他能力之间取得良好的平衡。

论文链接:
https://arxiv.org/abs/2407.12043
GitHub 地址:
https://github.com/allenai/noncompliance

4.Goldfish:对任意长度视频的视觉-语言理解

大多数当前基于大语言模型(LLM)的视频理解模型能够处理数分钟内的视频。然而,由于“噪音和冗余”以及“内存和计算”限制等挑战,它们在处理长视频时遇到困难。

来自阿卜杜拉国王科技大学的研究团队及其合作者提出了 Goldfish,一种专门为理解任意长度视频而设计的方法。他们也提出了 TVQA-long 基准,专门用来评估模型在理解长视频时对视觉和文本内容问题的能力。Goldfish 通过一种高效的检索机制应对这些挑战,该机制首先收集与指令相关的 top-k 视频片段,然后再提供所需的响应。这个检索机制的设计使 Goldfish 能够高效地处理任意长的视频序列,从而在电影或电视剧等情境中应用。

为了促进检索过程,研究团队开发了 MiniGPT4-Video,它为视频片段生成详细描述。在长视频评估基准匮乏的情况下,他们通过汇总整集的问题将 TVQA 短视频基准改编为扩展内容分析,从而将评估从部分理解转向完整集理解。他们在 TVQA-long 基准上取得了 41.78% 的准确率,比之前的方法提高了 14.94%。研究团队的 MiniGPT4-Video 在短视频理解上也表现出色,分别在 MSVD、MSRVTT、TGIF 和 TVQA 短视频基准上超越现有最先进方法 3.23%、2.03%、16.5% 和 23.59%。这些结果表明该模型在长视频和短视频理解方面都有显著改进。

论文链接:
https://arxiv.org/abs/2407.12679
项目地址:
https://vision-cair.github.io/Goldfish_website/

5.微信AI团队:大语言模型的补丁级训练

随着大语言模型(LLM)在语言理解和生成方面取得显著进展,其训练效率已成为一个关键问题。传统上,LLM 是通过预测序列中的下一个 token 来进行训练的。尽管 token 级训练取得了成功,但由于需要处理大量 token,导致计算成本相当高。

为了解决这个问题,腾讯研究团队推出了 LLM 的补丁级训练,通过将多个 token 压缩到一个补丁中来减少序列长度。在补丁级训练期间,研究团都为语言模型提供较短的补丁序列并训练它预测下一个补丁,从而在大大降低计算成本的情况下处理大部分训练数据。之后,模型会继续对剩余的训练数据进行 token 级训练,以与推理模式对齐。

在各种模型(参数从 370M 到 2.7B 不等)上的实验表明,与 token 级训练相比,补丁级训练可以将整体计算成本减少到 0.5 倍,而不会影响模型性能。

论文链接:
https://arxiv.org/abs/2407.12665
GitHub 地址:
https://github.com/shaochenze/PatchTrain

6.LMMs-Eval:对大型多模态模型评估的现实检验

大型基础模型的进步需要覆盖面广、成本低和零污染的基准测试。尽管对语言模型评估的探索不断进行,但对大型多模态模型(LMM)评估的全面研究仍然有限。

LMMs-Lab 团队以及新加坡南洋理工大学研究团队推出了 LMMs-EVAL,这是一个统一和标准化的多模态基准框架,涵盖了 50 多个任务和 10 多种模型,旨在促进透明和可重复的评估。

尽管 LMMs-EVAL 提供了全面覆盖,但研究团队发现它在实现低成本和零污染方面仍有不足。为了解决这一评估难题,研究团队进一步引入了 LMMs-EVAL LITE,这是一种精简的评估工具包,强调覆盖率和效率。此外,他们还提出了 Multimodal LIVEBENCH,它利用不断更新的新闻和在线论坛来评估模型在真实环境中的泛化能力,这是一种低成本和零污染的评估方法。

论文链接:
https://arxiv.org/abs/2407.12772
GitHub 地址:
https://github.com/EvolvingLMMs-Lab/lmms-eval

7.AgentPoison:通过“毒化”记忆或知识库对 LLM 智能体进行红队攻击

LLM 智能体在各种应用中表现出色,主要归功于其在推理、利用外部知识和工具、调用 API 以及执行操作与环境互动方面的高级能力。目前的智能体通常使用一个记忆模块或检索增强生成(RAG)机制,从知识库中检索具有相似嵌入的过去知识和实例,以指导任务规划和执行。然而,依赖未经验证的知识库引发了关于其安全性和可信度的重大担忧。

为揭示这些漏洞,芝加哥大学和伊利诺伊大学研究团队提出了一种新颖的红队攻击方法 AgentPoison,这是首个通过毒化长期记忆或 RAG 知识库来攻击通用和基于 RAG 的 LLM 智能体的后门攻击。特别地,研究团队将触发生成过程形式化为约束优化,通过将触发实例映射到唯一的嵌入空间来优化后门触发器,以确保每当用户指令包含优化的后门触发器时,会高概率地从被毒化的记忆或知识库中检索到恶意演示。同时,不含触发器的正常指令仍将保持正常性能。

与传统的后门攻击不同,AgentPoison 无需额外的模型训练或微调,且优化后的后门触发器表现出卓越的可转移性、上下文一致性和隐蔽性。广泛的实验表明,AgentPoison 在攻击三种现实世界的 LLM 智能体中效果显著:基于 RAG 的自动驾驶智能体、知识密集型问答智能体和医疗 EHRAgent。研究团队将毒化实例分别注入这些智能体的 RAG 知识库和长期记忆中,展示了 AgentPoison 的泛化能力。在每个智能体上,AgentPoison 在不影响正常性能(≤ 1%)的情况下,以 <0.1% 的毒化率达到了 ≥80% 的平均攻击成功率。

论文链接:
https://arxiv.org/abs/2407.12784
GitHub 地址:
https://github.com/BillChan226/AgentPoison

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值