机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测
作者:i阿极
作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页
😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍
📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪
| 专栏案例:机器学习 |
|---|
| 机器学习:基于逻辑回归对某银行客户违约预测分析 |
| 机器学习:学习k-近邻(KNN)模型建立、使用和评价 |
| 机器学习:基于支持向量机(SVM)进行人脸识别预测 |
| 决策树算法分析天气、周末和促销活动对销量的影响 |
| 机器学习:线性回归分析女性身高与体重之间的关系 |
| 机器学习:基于主成分分析(PCA)对数据降维 |
| 机器学习:学习KMeans算法,了解模型创建、使用模型及模型评价 |

本文介绍了如何使用朴素贝叶斯算法,特别是scikit-learn库中的GaussianNB、MultinomialNB和BernoulliNB,对花瓣和花萼的宽度和长度进行分类预测。通过理解贝叶斯定理,数据预处理,以及构建训练和测试数据集,展示了如何构建和评估分类模型。
订阅专栏 解锁全文
3119

被折叠的 条评论
为什么被折叠?



