
机器学习:LightGBM算法原理(附案例实战)
作者:i阿极
作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页
😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍
📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪
| 订阅专栏案例:机器学习 |
|---|
| 机器学习:基于逻辑回归对某银行客户违约预测分析 |
| 机器学习:学习k-近邻(KNN)模型建立、使用和评价 |
| 机器学习:基于支持向量机(SVM)进行人脸识别预测 |
| 决策树算法分析天气、周末和促销活动对销量的影响 |
| 机器学习:线性回归分析女性身高与体重之间的关系 |

本文介绍了LightGBM算法的原理,包括基于直方图的决策树算法、梯度的单边采样和特征选取优化。通过一个广告收益预测案例,展示了LightGBM的模型搭建、预测评估和参数调优过程,强调了其在大规模数据集上的高效性能。
订阅专栏 解锁全文
&spm=1001.2101.3001.5002&articleId=129793385&d=1&t=3&u=bc8478e514f24f22aae7a7444b9b8f78)
985

被折叠的 条评论
为什么被折叠?



