自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(41)
  • 资源 (1)
  • 收藏
  • 关注

原创 添加学生信息

模板引擎练习(Node.js + MongoDB)模块化开发创建 students 文件夹,包含 model , public , route , views 以及app.js五个文件和 js 文件,实现模块化开发,结构如下图:model 文件夹:存放数据库相关代码(connect.js + user.js)connect.js 代码如下:const mongoose = require('mongoose');// 连接数据库mongoose.connect('mongodb://lo

2021-04-12 09:56:46 10

原创 Error: listen EACCES: permission denied 0.0.0.0:80端口被占用

报错如下端口被系统模块占用win+R 打开 cmd 页面,输入 netstat -ano | findstr 80 命令查看 80端口被占用情况,如下图:端口被 4 占用,查询发现 4 是 SYSTEM 模块,故在 cmd 页面再输入 netsh http show servicestate 查看 http 服务状态,发现请求队列如下:在任务浏览器状态栏右键, 打开 PID 视图,找到 PID 序号为 6184 的进程,右键结束进程即可释放 80 端口(图内已关闭 6184)...

2021-04-11 09:51:05 179

原创 npm install报错记录

npm install错误信息:npm WARN saveError ENOENT: no such file or directory, open ‘C:\WINDOWS\system32\package.json’npm WARN enoent ENOENT: no such file or directory, open ‘C:\WINDOWS\system32\package.json’npm WARN system32 No descriptionnpm WARN system32 N

2021-03-24 11:18:13 7

原创 Leecode刷题记录(JavaScript版):2.两数相加

题目描述:给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字 0 之外,这两个数都不会以 0 开头。示例1:输入:l1 = [2,4,3], l2 = [5,6,4]输出:[7,0,8]解释:342 + 465 = 807示例2:输入:l1 = [0], l2 = [0]输出:[0]示例3:输入:l1 = [9,9,9,9,9,9,9]

2021-03-13 16:26:06 5

原创 Leecode刷题记录(JavaScript版):1.两数之和

题目描述:给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。你可以按任意顺序返回答案。示例1:输入:nums = [2,7,11,15], target = 9输出:[0,1]解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。示例2:输入:nums = [3,2,4], target = 6输出:[

2021-03-12 10:55:09 8

原创 简单语音识别项目报错记录

项目场景:一个简单识别英文0-9十个英文单词的语音识别项目项目链接:cnn-asr报错:AttributeError: module ‘tensorflow’ has no attribute ‘placeholder’self.input_x = tf.placeholder(tf.compat.v1.float32, [None, width, height], name='input_x')self.input_y = tf.placeholder(tf.compat.v1.float3

2021-01-08 15:23:23 15

原创 报错记录:ValueError: Input contains NaN, infinity or a value too large for dtype(‘float32‘)

报错:ValueError: Input contains NaN, infinity or a value too large for dtype(‘float32’)解决:from sklearn.preprocessing import Imputerdf = Imputer().fit_transform(df)这个报错主要由于数据当中有大量的缺失值,sklearn.preprocessing.Imputer是填补缺失值的一个重要的方法,它的详细参数包括:sklearn.preproc

2020-12-16 21:11:32 278 1

原创 TensorFlow2.3安装过程记录

记录TensorFlow安装过程中遇到的麻烦

2020-12-06 18:59:55 101

原创 前端开发练习:淘宝焦点图

效果图如下:代码如下:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>淘宝焦点图</title> <style> * {

2020-11-17 08:59:46 132

原创 前端开发练习:学成在线首页

效果图如下:代码下载地址如下:学成在线首页

2020-11-12 16:19:28 60

原创 前端开发练习:天气页面

效果图如下:代码如下:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <title>天气</title> <link rel="stylesheet" href="TQ.css"></head><body><h1>北方高温明日达鼎盛 京津冀多地地表温度将超60℃</h1&

2020-11-05 22:27:43 147

原创 前端开发练习:HTML注册页面

效果图如下:代码如下:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <title>注册页面</title></head><body> <h4>青春不常在,抓紧谈恋爱</h4> <table width="500"><!-- 第一行性别-

2020-11-05 22:22:50 95

原创 前端开发练习:快报模块

效果图如下:代码如下:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <title>快报模块</title> <style> * { margin: 0; padding: 0; } .kuaibao {

2020-11-05 22:19:34 104

原创 前端开发练习:简单盒子模型

效果图如下:代码如下:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <title>产品模块</title> <style> * { margin: 0; padding: 0; } body {

2020-11-05 22:16:33 57

原创 李宏毅老师课程:Unsupervised Learning:Auto-encoder

无监督学习:自动编码器IntroductionRecap: PCADeep Auto-encoderStructurePCA vs Deep Auto-encoderText Retrieval(文字检索)Similar Image SearchPre-training DNNDe-noising auto-encoder(去噪自动编码器)Auto-encoder for CNNCNN - UnpoolingDeconvolutionIntroductionAuto-encoder本质上就是一个自我压缩

2020-09-10 00:04:39 126

原创 李宏毅老师课程:Unsupervised Learning: PCA

无监督学习:PCAPCAFormulaDecorrelationAnother Point of ViewWeakness of PCAPCA for PokemonPCA for MNISTPCA for FacePCA如果reduce to 1D,我们使用z1=w1∗xz_1=w^1*xz1​=w1∗x,使得xxx投影到w1w^1w1上,即达到了降维的目的,那么我们如何来评价降维的好坏呢?我们可以使用降维之后数据的variance来评价,variance越大越好如果reduce to 2D,那

2020-09-04 16:05:01 111

原创 李宏毅老师课程:Unsupervised Learning:Introduction

无监督学习 - 介绍OverviewClusteringIntroductionHAC(层次聚类)Dimension Reduction(降维)IntroductionWhy Dimension Reduction Help?How to do Dimension Reduction?Overview无监督学习(Unsupervised Learning)可以分为两种:化繁为简:聚类(Clustering)降维(Dimension Reduction)无中生有(Generation)Cl

2020-09-04 16:04:50 69

原创 李宏毅老师课程:Unsupervised Learning:Neighbor Embedding

无监督学习:邻居嵌入Manifold Learning(流形学习)Locally Linear Embedding (LLE)(局部线性嵌入)Laplacian Eigenmaps(拉普拉斯特征图)T-distributed Stochastic Neighbor Embedding (t-SNE)Manifold Learning(流形学习)在高维空间里,距离该点很远的点很可能与这个点也是有关联的,因此我们可以把3-D的空间进行降维,那么我们就可以更方便地进行clustering或unsupervis

2020-09-04 16:04:23 111

原创 李宏毅老师课程:Conditional Generation by RNN & Attention

RNN条件生成&注意GenerationConditional GenerationAttentionDynamic Conditional GenerationMachine TranslationSpeech RecognitionImage Caption Generation(图片字幕生成)Memory NetworkNeural Turing Machine(神经图灵机)Tips for GenerationAttentionMismatch between Train and TestM

2020-08-28 15:04:20 111

原创 李宏毅老师课程:Network Compression

网络压缩Why ?Network Pruning(修剪)Network can be prunedNetwork PruningWhy Pruning?Lottery Ticket Hypothesis(彩票假说)Pratical Issue(实际问题)Knowledge DistillationStudent and TeacherEnsemble(合奏)TemperatureParameter Quantization(参数量化)Architecture Design(架构设计)Low rank app

2020-08-28 15:04:01 155

原创 李宏毅老师课程:Attack ML Models

攻击机器学习模型MotivationWhat do we want to do?Loss Function for AttackConstraintHow to AttackExampleAttack ApproachesWhite Box v.s. Black BoxBlack Box AttackAttack in the Real WorldDefenseMotivationWhat do we want to do?attack要做的事就是把找到原图片x0x^0x0对应的x′x'x′Lo

2020-08-21 17:10:24 111

原创 李宏毅老师课程:Explainable ML

可解释的MLIntroductionWhy we need Explainable ML?Interpretable v.s. PowerfulLocal ExplanationBasic IdeaLimitation of Gradient based ApproachesAttack InterpretationGlobal ExplanationActivation Minimization (review)Constraint from GeneratorUsing a model to expla

2020-08-21 17:09:47 134

原创 李宏毅老师课程:Semi-supervised

这里写目录标题一级目录二级目录三级目录一级目录二级目录三级目录

2020-08-21 17:08:54 99

原创 李宏毅老师课程:Unsupervised Learning - Word Embedding

词嵌入:word embeddingIntroductionWord EmbeddingCount basedPrediction basedSharing ParametersTrainingVarious Architectures(各种架构)ResultIntroduction用vector来表示一个word,最传统的做法是1-of-N Encoding,可以把有同样性质的word进行聚类,划分成多个class,然后用word所属的class来表示这个word,最后把每一个word都投影到高维空间

2020-08-14 16:04:42 111

原创 李宏毅老师课程:Recurrent Neural Network

递归神经网络:一般用于记住之前的状态,以供后续神经网络的判断一级目录二级目录三级目录一级目录二级目录三级目录

2020-08-14 16:04:15 138

原创 李宏毅老师课程:Tips for Deep Learning

这里写目录标题一级目录二级目录三级目录一级目录二级目录三级目录

2020-08-07 15:15:41 97

原创 李宏毅老师课程:Backpropagation(反向传播)

反向传播一级目录二级目录三级目录一级目录二级目录三级目录

2020-07-31 11:52:12 112 3

原创 李宏毅老师课程:Convolutional Neural Network

卷积神经网络Why CNN for Image?Three Property for CNN Theory BaseThe Whole CNN StructureCNN – ConvolutionProperty 1Property 2Feature MapColorful imageConvolution V.s. Fully ConnectedCNN – Max PoolingOperation of max poolingConvolution + Max PoolingFlattenWhy CNN

2020-07-30 23:41:39 173

原创 李宏毅老师课程:Why Deep

DeepShallow V.s. DeepModularization(模块化)exampleSpeechlanguage basicsprocessAnalogyLogic Circuit剪窗花End-to-end LearningConclusionShallow V.s. DeepDeep Learning在很多问题上的表现都是比较好的,越deep的network一般都会有更好的performance那为什么会这样呢?有一种解释是:一个network的层数越多,参数就越多,这个model就越

2020-07-24 14:22:41 77

原创 李宏毅老师课程:Deep Learning

深度学习一级目录二级目录三级目录一级目录二级目录三级目录

2020-07-21 23:43:33 122

原创 李宏毅老师课程Classification: Logistic Regression

逻辑回归Step 1: Function Set二级目录三级目录Step 1: Function Set二级目录三级目录

2020-07-17 15:15:18 78

原创 数据可视化:下载数据

数据可从https://www.ituring.com.cn/book/1861下载绘制气温图表Step 1:绘制基本图形二级目录三级目录绘制气温图表Step 1:绘制基本图形# csv模块用于分析csv文件中的数据行import csvfrom matplotlib import pyplot as plt# 从文件中获取最高气温# 将要使用的文件的名称存储在filename中filename = 'sitka_weather_07-2014.csv'# 打开文件,并将结果文件对象存储

2020-07-14 23:01:19 111

原创 数据可视化(生成数据)

记录自己数据可视化的学习过程(具体内容写在代码注释里)生成数据绘制简单折线图Step 1:修改标签文字和线条粗细Step 2:校正图形绘制散点图Step 1:绘制一系列的点Step 2:自动计算数据Step 3:使用颜色映射并保存图表随机漫步生成数据绘制简单折线图初始代码如下:import matplotlib.pyplot as pltsquares = [1, 4, 8, 16, 25]plt.plot(squares)plt.show()初始效果图如下:matplotlib是一

2020-07-10 15:53:17 146

原创 Python的部分方法函数

记录一些我自己学习过程中遇到的常见的方法1.代码段如下:name = "javan cheng"print(name)# 字符串首字母大写print(name.title())# 字符串全大写print(name.upper())# 字符串全小写print(name.lower())运行结果如下:2.代码段如下:first_name = "javan"last_name = "cheng"full_name = first_name + " " + last_namepri

2020-07-03 16:25:25 52

原创 Classification:Probabilistic Generative Model(概率生成模型)

分类问题输入数值化How to do Classification三级目录分类问题就是输入找⼀个function,它的input是⼀个object,它的输出是这个object属于哪⼀个class以宝可梦为例,已知宝可梦有18种属性,做⼀个宝可梦种类的分类器,找⼀个function的input是某⼀只宝可梦,output是这只宝可梦属于这18属性中的哪⼀个。输入数值化要想把⼀个东西当做function的input,就需要把它数值化,即用一组数字来描述一只宝可梦的特性(可以理解成各项属性的种族值)Ho

2020-06-19 13:50:53 225

原创 梯度下降法——一元线性回归(实战)

学自覃秉丰老师所授课程step 1:载入数据画出图像step 2:求解拟合此数据的直线的参数step 1:载入数据画出图像import numpy as npimport matplotlib.pyplot as plt# 载入数据data = np.genfromtxt("data.csv", delimiter=",")# 取所有行第0列数据x_data = data[:,0]# 取所有行第1列数据y_data = data[:,1]# 画图工具plt.scatter(x_dat

2020-06-11 22:33:08 248

原创 Gradient Descent

Gradient DescentReviewTip 1:Tuning your learning rates三级目录Review下图是将gradient descent在投影到⼆维坐标系中可视化的红色箭头是指在(θ1,θ2) 这点的梯度,梯度方向即箭头方向(从低处指向高处),梯度大小即箭头长度(表示在θ点处最陡的那条切线的导数大小,该方向也是梯度上升最快的方向) ;蓝色曲线代表实际情况下参数θ1和θ2的更新过程图,每次更新沿着蓝色箭头方向loss会减小,蓝色箭头方向与红色箭头方向刚好相反,代表着梯度

2020-06-11 12:23:24 104

原创 Basic Concept

Basic ConceptWhere does the error come from?Bias and Variance of Estimator三级目录Where does the error come from?越复杂的model不见得会带给你越低的errorerror主要来源于 bias(偏差) 和 variance(方差)了解了error的来源有助于采取适当的方法来improve你的modelBias and Variance of Estimator均值、方差、样本估计总体、无偏估计

2020-06-04 12:11:12 226

原创 Regression(Part 2)

RegressionHow to do betterregularization解决overfittingHow to do better需要重新设计model在gradient descent可以找到best function的前提下,function所包含的项的次数越高,越复杂,error在training data上的表现就会越来越小;但是,我们关心的不是model在training data上的error表现,而是model在testing data上的error表现。在本例中,之前我们的

2020-06-03 22:30:24 82

原创 Regression(Part 1)

RegressionModel函数的适合度挑选最好的函数回归:输出一个标量Model线性模型:b表示截距,w表示直线的斜率函数的适合度x轴表示输入前数值,y轴表示输入后数据Loss Function L:输入一个方法,输出告诉你这个方法有多不好Input:a FunctionOutput:How bad/good it is估测误差:真实值y减去预测值再取平方(最小二乘法)如果L(f)越大,说明该Function表现得越不好;L(f)越小,说明该Function表现得越好挑选最好

2020-06-01 21:30:07 93

前端页面练习:学成在线首页|study_online.zip

个人练习的一个静态页面,只有HTML和CSS,内容和逻辑较为简单,素材来源于黑马的pink老师,算是自己跟着做好的第一个项目

2020-11-12

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除