【统计学习方法】学习笔记——EM算法及其推广
概率模型有时既含有观测变量( observable variable),又含有隐变量或潜在变量( (latent variable)。如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或者贝叶斯估计法估计模型参数。但是当模型含有隐变量时,就不能用这些估计方法。EM算法就是含有隐变量的概率模型参数的极大似然估计法,或极大后验概率估计法。将观测数据表示为 Y=(Y1,Y2,⋯ ,Yn)TY=\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)^{\mathrm{