【Python】Python 数值区间处理 - interval 库的快速入门

interval 库的快速入门

使用 Python 进行数据处理的时候,常常会遇到判断一个数是否在一个区间内的操作。我们可以使用 if else 进行判断,但是,既然使用了 Python,那我们当然是想找一下有没有现成的轮子可以用。事实上,我们可以是用 interval 这一个库来完成我们需要的操作。

区间判断基础

最基础的区间判断操作就是先创建一个区间几个,然后使用 in 来判断一个数是否存在于区间之内。代码如下:

from interval import Interval
zoom_2_5 = Interval(2, 5)
print(zoom_2_5)
>> [2..5]
print(2 in zoom_2_5)
>> True
print(6 in zoom_2_5)
>> False

我们可以从上面的代码看到,我们先使用** Interval **创建一个集合,然后将我们想要比较的数用 in 即可得到结果。但是,我们都知道,我们的集合其实是有分开区间和闭区间的,上面的代码中,创建的是 [2, 5] 的区间集合,那么假如我们想要创建一个如 (2, 5] 的集合,应该如何呢?请看下面的代码:

zoom_o2_5 = Interval(2, 5, lower_closed=False)
print(zoom_o2_5)
>> (2..5]
print(2 in zoom_o2_5)
>> False
zoom_o2_o5 = Interval(2, 5, closed=False)
print(zoom_o2_o5)
>> (2..5)

从上面的代码可以看到,在使用 Interval 创建集合的时候,使用** lower_closed 参数,我们可以将集合区间下限设置为非闭区间**,也就是开区间,这样我们比较 2 是否在这个区间里的时候,返回的结果是 False。类似的,如果想区间上限设置为开区间,可以将 upper_closed 设置为 False,如果想直接创建一个开区间,那么久可以直接设置 closed 为 False。

集合的操作

Interval 有三种对集合区间的操作方法,分别是 join overlaps adjacent_to ,以下将演示以下这三个方法的用法:

zoom_1_3 = Interval(1, 3)
zoom_1_5 = Interval(1, 5)
zoom_o3_5 = Interval(3, 5, lower_closed=False)

join 合并两个连续的区间集合

print(zoom_1_3.join(zoom_1_5))
>> [1..5]

overlaps 判断两个区间是否重复

print(zoom_1_3.overlaps(zoom_1_5))
>> True
print(zoom_1_3.overlaps(zoom_o3_5))
>> False

adjacent_to 判断区间是否相邻比重复

print(zoom_1_3.adjacent_to(zoom_o3_5))
>> True

小结

interval 库还提供了 IntervalSet 包,里面提供了对多个 Interval 的操作,碍于篇幅的关系以及在实际应用中场景的不同具体用法也不一样,这里就不赘述了,想更深入了解可以使用 Ipython 进入交互模式然后使用 help() 方法来查看具体不同方法的用法,这个库里面都提供了详细的说明。本文的介绍就到这里,希望对你有帮助。

原文链接:https://www.jianshu.com/p/635069917a83

Python中,当未知数在变量范围内求函数最大值,可以使用优化如`scipy.optimize`中的`minimize`方法。虽然`minimize`主要用于求最小值,但可以通过将目标函数乘以-1来转化为求最大值的问题。下面是一个简单的步骤说明: 1. 首先定义你的目标函数,这个函数接受一个或多个参数,并返回一个数值。在这个场景中,如果你想求最大值,需要确保目标函数能够返回最小值的相反数。 2. 然后,定义一个变量的范围,通常这个范围是通过边界来表示的,可以是具体的数值区间。 3. 使用`minimize`方法,并设置适当的求解器(如'SLSQP'或'BFGS'等),其中`method`参数可以用来指定。 4. 将目标函数乘以-1传递给`minimize`方法,因为`minimize`默认寻找最小值。 5. 设置`minimize`方法的`bounds`参数,以定义变量的范围。 6. 调用`minimize`函数后,将结果中的`x`(最优解)和函数值(取负后)用来确定最大值。 下面是一个简单的代码示例: ```python from scipy.optimize import minimize def objective_function(x): # 假设这是你的目标函数,这里只是简单地返回 x 的平方 return -x[0]**2 # 乘以-1因为我们要找最大值 # 定义变量的范围 bounds = [(None, None)] # 如果有多个变量,需要为每个变量指定一个范围 # 调用minimize函数,寻找目标函数的最小值,因为我们乘以了-1,所以实际上是在找最大值 result = minimize(objective_function, x0=[0], bounds=bounds) # 输出最优解 print("最优解:", result.x) # 输出函数的最大值(取负值后的最小值) print("函数的最大值:", -result.fun) ``` 请注意,如果你的目标函数是非线性的或者有多个局部最小/最大值,不同的优化算法可能找到的解会不同。在这种情况下,你可能需要尝试不同的算法或者对初始猜测值进行调整,以确保找到全局最大值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值