Arya算法笔记
码龄5年
求更新 关注
提问 私信
  • 博客:85,054
    问答:156
    85,210
    总访问量
  • 25
    原创
  • 103
    粉丝
  • 108
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2020-03-30
博客简介:

ARYAD的博客

查看详细资料
个人成就
  • 获得162次点赞
  • 内容获得27次评论
  • 获得468次收藏
  • 代码片获得987次分享
  • 原力等级
    原力等级
    3
    原力分
    393
    本月获得
    1
创作历程
  • 3篇
    2024年
  • 13篇
    2023年
  • 2篇
    2022年
  • 5篇
    2021年
  • 10篇
    2020年
成就勋章
TA的专栏
  • CV/NLP知识点
    14篇
  • 医学图像知识
    18篇
  • pytorch
    6篇
  • 算法刷题
    1篇
  • AI部署
    1篇
  • opencv c++
    3篇
  • 代码问题
    5篇
  • 系统安装
    3篇
  • GAN
    1篇

TA关注的专栏 3

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

调参问题记录--显存下降&bs调整

bs调整为32,lr调整为0.01,按理说应该会比bs为1,lr为0.0001能够更快到收敛值,有一个较好的结果,但是我发现训练后期会让整个生成模型变得不稳定,甚至loss逐渐增大。最近接触一个生成代码,在每个epoch的train后放入了torch.cuda.empty_cache(),然后进入eval,模型整体bs为1,lr为0.0001。我觉得可能是因为针对专门的数据集,基于GAN的生成模型在大bs中学习会很困难,导致bs增大后,模型能力不足,导致模式崩溃。
原创
发布博客 2024.11.13 ·
238 阅读 ·
9 点赞 ·
1 评论 ·
4 收藏

【代码随想录】day1 数组

因为学计算机语言是属于半路出家,在接触数据结构之前,我只了解数据的类型,从没有了解过不同数据类型的存储方式。数组、链表等等因为不同的存储方式,展现出不同的优缺点,以适应不同的用途。代码随想录是属于把饭喂到嘴里的好!里面资料对于我这种小白来说,真的是很保姆了。之前刷过一小段时间的力扣算法,但没有坚持下来,学到链表就已经放弃。这次学习给自己一个目标:按照卡哥的进度,完成整个数据结构的主要题目,并在平台中打卡记录。
原创
发布博客 2024.03.05 ·
335 阅读 ·
7 点赞 ·
1 评论 ·
2 收藏

AI模型部署基础知识(一):模型权重与参数精度

一般情况来说,我们通过收集数据,训练深度学习模型,通过反向传播求导更新模型的参数,得到一个契合数据和任务的模型。这一阶段,通常使用python&pytorch进行模型的训练得到pth等类型文件。AI模型部署就是将在python环境中训练的模型参数放到需要部署的硬件环境中去跑,比如云平台和其他cpu、gpu设备中。一般来说,权重信息以及权重分布基本不会变(可能会改变精度、也可能会合并一些权重)。该部分笔记参考内容。
原创
发布博客 2024.01.09 ·
2711 阅读 ·
25 点赞 ·
0 评论 ·
29 收藏

医学影像知识(四):三维医学影像分割任务常见后处理

对于3D分割任务,后处理的目标主要是减少假阳性。使用形态学操作、阈值处理和连通区域分析可以有效地提高分割的准确性。以下是这三种方法在3D分割任务中的具体应用说明:例如针对肺动脉风格任务,在几何上,肺内血管与其他正常和异常肺结构相比,呈凸圆柱状,在CT图像上呈高密度区。虽然气道也是为肺部通气的管状结构,但气道管腔在CT图像上表现为低密度区域,并具有凹形描述。
原创
发布博客 2023.12.27 ·
1697 阅读 ·
25 点赞 ·
0 评论 ·
28 收藏

医学影像知识(三):三维医学影像各向同性与各向异性的对比

需要注意的是,当水平方向和纵向的间距差异较大时,通过插值生成的中间层面可能不包含真实的图像信息。为此,医学影像的预处理阶段通常包括一步关键的图像插值过程,以调整像素间距,实现xyz三个方向的像素间距一致。通常情况下,CT图像在x和y方向(即水平层面)的像素间距较小,分辨率较高,大约为0.5mm。而在z方向(即纵向,从头到脚的方向)的像素间距,也就是层间距,通常较大,约在1到3mm之间。高数据要求: 要获得高质量的各向同性图像,需要更高的扫描分辨率,可能导致更长的扫描时间和更大的数据量。
原创
发布博客 2023.12.27 ·
2280 阅读 ·
26 点赞 ·
3 评论 ·
38 收藏

AI算法相关就业向学习(算法、部署、加速)

整个文章内容是在微信公众号进行的笔记总结和个人感悟本人本科通信,研究生是cv医学影像方向,初识算法模型相关还是在本科参加数学建模,那个时候用matlab实现最简单的机器学习方法解决的问题,后来研究生开始了解深度学习和CV相关的知识和代码,整个学习过程也不是很系统,很多问题也是一知半解,到现在做算法工作,发现AI整个方向有太多不我了解的,某天看到了老潘的文章,首先普及了我很多基础知识和词条,也能很清晰的指清楚学习的方向。
原创
发布博客 2023.12.22 ·
879 阅读 ·
16 点赞 ·
0 评论 ·
19 收藏

OpenVINO IR与 ONNX模型加载速度的对比与实现

模型加载速度的快慢通常取决于多个因素,包括模型格式、模型的大小和复杂性、使用的框架以及底层硬件。总之,如果您在 Intel 硬件上进行模型部署,使用 OpenVINO IR 格式可能会在模型加载和运行时推理上提供性能上的优势。这是因为 OpenVINO 对 Intel 硬件有针对性的优化。而在非特定于 Intel 的硬件或需要跨框架兼容性的情况下,ONNX 可能是一个更灵活的选择。
原创
发布博客 2023.12.22 ·
2273 阅读 ·
19 点赞 ·
0 评论 ·
25 收藏

C++ 部署问题(一):onnx模型出现精度偏差大问题

解决方法:从数据读取开始,调试代码,找到数据处理的问题点;一般情况下,只有这两种原因,不太可能有第三种原因,所以没解决只能说明你还没找到问题点;
原创
发布博客 2023.11.15 ·
2397 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

医学影像知识(二):医学影像常见数据预处理方式

医学图像数据分析是研究生物标记物并验证其准确性的过程,就像警察追踪嫌疑人一样,根据特征来识别目标并确认身份。这过程包括筛选特征以及验证结论的正确性。医学图像涵盖了病理图像、影像图像(如X光、CT扫描、MRI图像)和检验图像等。我们将重点介绍对影像图像的数据分析。比如,CT图像是由不同灰度构成的,医生通过观察图像上的异常特征来做出疾病诊断,比如肺癌病变通常呈现为肿块,具有特定的边缘特征。不过,这些特征通常是肉眼观察得出的。我们可以利用工具来提取更多特征,因为提取的特征越多,我们获得的判断证据也越充分。
原创
发布博客 2023.11.07 ·
6480 阅读 ·
7 点赞 ·
1 评论 ·
86 收藏

VS2022+Cmake3.22+dcmtk3.6.7编译问题记录

导致97个无法编译成功,尝试了改变cmake版本,以及对应了多个configure选取,发现勾选DCMTK中的DCMTK_WITH_ICU就解决了这个问题。
原创
发布博客 2023.09.06 ·
362 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

医学影像知识(一):DICOM影像文件参数:窗宽窗位

较大的窗宽意味着更宽广的灰度范围,可以显示更多的细节,但可能在图像中丧失一些对比度。较小的窗宽则会强调图像中的细微灰度变化,但在图像的范围内可能丢失了一些细节。窗宽窗位是医学影像处理中不可或缺的概念,通过调整灰度范围和中心,可以提高图像的对比度和清晰度。SOP实例UID(SOP Instance UID): 唯一标识DICOM文件中的具体图像实例,每个图像实例都有一个独特的UID。采集设备信息(Equipment Information): 描述了使用的影像设备的信息,包括制造商、型号、软件版本等。
原创
发布博客 2023.08.24 ·
3538 阅读 ·
1 点赞 ·
7 评论 ·
13 收藏

C++ opencv (一):基础代码入门

为实现图形的透明效果,采取在图形文件的处理与存储中附加上另一个8位信息的方法,这个附加的代表图形中各个素点透明度的通道信息就被叫做Alpha通道。Alpha通道使用8位二进制数,就可以表示256级灰度,即256级的透明度。存在问题:图像在放大后像素间存在间隙(为什么在1.2小节中进行膨胀的原因)图像模糊(GaussianBlur)图像转换(cvtColor)图像边缘扩大(dilate)图像边缘侵蚀(erode)\。显示内容(putText)\。图像边缘检测(Canny)创建色调可调节滑动窗口。
原创
发布博客 2023.08.21 ·
340 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

GAN知识点(一):GAN的网络结构与损失

该知识点中,我们首先介绍生成对抗网络GAN的主要模型架构——生成器和鉴别器。其次,我们介绍GAN的损失函数以及相关的训练过程。
原创
发布博客 2023.08.21 ·
1969 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

关于多分类的评价指标acc、pre、recall、f1

1.准确率ACC:overall:准确率是分类正确的样本占总样本个数的比例,即其中, ncorrect​为被正确分类的样本个数, ntotal​为总样本个数。结合上面的混淆矩阵,公式还可以这样写:y_pred = [0, 2, 1, 3]y_true = [0, 1, 2, 3]print(accuracy_score(y_true, y_pred)) # 0.5print(accuracy_score(y_true, y_pred, normalize=False)) # 2
原创
发布博客 2023.08.21 ·
2868 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

肺炎多分类任务BASE

针对backbone的分类网络具有Resnet系列、Densenet系列、Inception系列,常借助辅助手段(FPN、attention、决策树、lasso等)提高模型性能其中Resnet50v2 和 covidnet在四分类中取得不错的效果。1.数据集2.评价指标基于分类任务的常见评价指标:召回率(recall)、精准率(precision)、特异性(specificity)、准确率(accuracy)、FI-score、ROC曲线和AUC指标。3.模型Deeplearning enab
原创
发布博客 2023.08.21 ·
281 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Attention总结(自用,不定期更新)

Channel AttentionSqueeze-and-Excitation NetworksSENet的高效率主要来自于2个模块:(1)squeeze:global pool将w*h压缩到了1减少了后续操作中对spatial维度的计算和参数。(2)excitation:通道维度先降再升如果直接用一个c->c的FC,那么参数为c2;如果先降再升用两个FC,那么参数为(c2)/r+(c**2)/r,原文中r=16,那么参数就变为了一个FC的1/8.(为什么r=16???)Selec
原创
发布博客 2023.08.21 ·
85 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

在分类问题中CE loss 与BCE loss的应用

在做视觉分类问题的过程中有个问题一直困扰着我:1.CE和BCE 分别是针对何种分类任务?2.在做具体的任务时如何区别的使用他们?3.分类标签对于不同的多分类任务,是选择普通标签还是one-hot标签?这和loss选择有关么?损失函数公式定义区别由于softmax输出的概率值和为1,网络的优化方向是提升对 y=1 的分类能力,自然其它类别的预测得分就会下降,因此不必担心假阳性的预测得不到改善。类别间是否互斥问题在分类问题中,如果遇到类别间不互斥的情况,只能采用“sigmoid+BCE”;如
原创
发布博客 2022.04.18 ·
2044 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

调试parser.parse_args 出现systemexit 2解决方案

在使用parser过程中经常遇到parser.parse_args 出现systemexit 2具体如下:parser = argparse.ArgumentParser()# model argumentsparser.add_argument('--img_size', type=int, default=256, help='Image resolution')args = parser.parse_args() vscode
原创
发布博客 2022.04.17 ·
6533 阅读 ·
4 点赞 ·
10 评论 ·
9 收藏

医学可用的数据增强算法

常用医学数据增强算法传统数据增强算法mix up数据增强Samplepairing数据增强是对训练样本的各种有章法的变换,这就使得模型能够学到图像更本质的特征,增强模型对样本细微变换的适应性,减弱对变化的敏感。传统数据增强算法通过对图片进行针对图像整体的物理几何变换:翻转、平移、放大、缩小等。还有针对图像像素增加噪声的增强方法:高斯噪声、椒盐噪声等。这些传统数据增强算法作用有限,尤其是针对复杂模型,收效甚微。mix up数据增强该算法由Facebook人工智能研究院于2018年提出,发表在《m
原创
发布博客 2021.07.01 ·
2711 阅读 ·
1 点赞 ·
2 评论 ·
11 收藏

Pytorch多GPU和Sync BatchNorm代码

由于复现spade的过程中遇到了一些GPU的问题,所以决定好好理解一下DPL代码问题终端显示暂行不动,并没有报错。GPU没有加载进程,同时CPU也没有动。考虑可能是DPL的问题。由于代码中使用了Sync BatchNorm,考虑到可能是DPL的问题。nn.DataParallel在forward阶段,当前GPU上的module会被复制到其他GPU上,输入数据则会被切分,分别传到不同的GPU上进行计算;在backward阶段,每个GPU上的梯度会被求和并传回当前GPU上,并更新参数。也就是复制mo
原创
发布博客 2021.06.17 ·
2216 阅读 ·
2 点赞 ·
1 评论 ·
7 收藏
加载更多