毕业设计:基于深度学习的行人轨迹预测算法 人工智能

目录

前言

项目背景

设计思路

数据集

模型训练

更多帮助


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

       大家好,这里是海浪学长计算机毕设专题,本次分享的课题是

       🎯基于深度学习的行人轨迹预测算法

项目背景

       行人轨迹预测在计算机视觉和智能交通领域中具有重要意义。准确预测行人的未来运动轨迹可以应用于行人行为分析、智能交通系统、自动驾驶车辆等领域,有助于提高交通安全性和交通效率。然而,由于行人的运动具有不确定性和复杂性,传统的轨迹预测方法往往难以满足实际需求。随着深度学习技术的快速发展,基于深度学习的行人轨迹预测算法逐渐成为研究热点。通过深度学习模型的训练和优化,可以实现更准确、更可靠的行人轨迹预测,为智能交通系统的发展提供重要支持。

设计思路

       循环神经网络(RNN)是解决深度学习中序列任务问题的有效工具。其最大特点是神经元可以在某一时刻的输出作为下一个时刻的输入,通过串联连接若干个神经元,可以有效捕捉序列数据中的上下文依赖关系,表现出良好的记忆性。在RNN中,神经元之间的权值是共享的,先沿着时间序列的方向进行前向计算,然后利用反向传播算法实现网络中参数的更新。RNN网络中隐藏层的值不仅取决于当前的输入值,还与前一时刻隐藏层的输出值有关,通过记住前面的信息并将其应用于当前的输出,使得神经元之间能够实现信息交流,形成了一个具有记忆功能的闭合反馈结构。

毕业设计:基于深度学习的行人轨迹预测算法 人工智能

       循环神经网络(RNN)在序列预测问题上表现出色,但在实际应用中面临一些难题。随着模型深度的增加,历史信息在传播过程中会逐渐衰减,导致近位置的信息与远位置的信息相比,占有更重要的权重,因此RNN不能很好地处理长距离的依赖。长短时记忆网络(LSTM),作为RNN网络的一种变体。通过引入门控机制选择性筛选和存储信息,LSTM网络可以学习长时间依赖的信息。LSTM网络的内部结构由输入门、遗忘门和输出门来控制信息传递。这种结构能够对细胞状态进行添加或删除信息,从而更好地处理长序列问题。

毕业设计:基于深度学习的行人轨迹预测算法 人工智能

       生成对抗网络(GAN)是一种高效的无监督学习技术,通过独特的博弈对抗思想在众多生成模型中脱颖而出,广泛应用于图像修复、图像去噪、超分辨率以及视频生成等领域。传统生成式模型存在泛化能力不强和生成效果有限的缺陷,而GAN通过对抗学习有效解决了高维度概率密度分布下的训练问题。GAN网络由生成器和判别器两个部分组成,生成器用于捕获真实轨迹的潜在分布,根据随机噪声生成接近真实运动轨迹的虚假样本;判别器用于区分输入数据是真实的轨迹还是生成的轨迹。两者在网络中交替训练,通过更新自身参数使损失最小化,最终达到一个纳什均衡状态。

毕业设计:基于深度学习的行人轨迹预测算法 人工智能

       图卷积神经网络(GCN)是深度学习在图数据中的一种应用,其核心是构建卷积算子和池化算子。GCN通过在每一层的图卷积层中对所有节点进行卷积,实现节点邻域特征信息的聚合,并通过激活函数和池化完成目标节点特征的更新。重复执行这个过程,每个节点都得到了来自更远节点的特征信息,最终实现全图节点的特征表示学习。GCN网络将图G映射到一个新的特征空间G,有效学习了图中节点和边的特征信息。将图神经网络应用于轨迹预测任务,可以有效捕捉场景中交通参与者之间的社会交互影响,从而生成合理的未来运动轨迹。

毕业设计:基于深度学习的行人轨迹预测算法 人工智能

       注意力机制最早源于对人类视觉系统的研究,使有限的人类注意力得到高效合理的分配,提高信息处理的效率。在深度学习中,注意力机制模拟人类视觉的工作机制,对包含重要信息的区域进行聚焦并赋予高权重,对不包含所需信息的区域进行忽略并赋予低权重,使得模型可以适用于各种情况,提高网络的鲁棒性和可扩展性。注意力机制常应用于序列到序列的编码器-解码器模型中,通过分配不同的权重提取更关键的信息。注意力机制的引入可以解决编码器-解码器模型中存在的长记忆有限问题,提高解码效果。

毕业设计:基于深度学习的行人轨迹预测算法 人工智能

 相关代码示例:

mport torch  
from torch.nn import functional as F  
from torch_geometric.nn import GCNConv  
  
# GCN层  
class GCNLayer(torch.nn.Module):  
    def __init__(self, in_channels, out_channels):  
        super(GCNLayer, self).__init__()  
        self.conv = GCNConv(in_channels, out_channels)  
  
    def forward(self, x, edge_index):  
        # x: 节点特征矩阵, 大小为 (N, in_channels)  
        # edge_index: 边索引矩阵, 大小为 (2, E),其中E是边的数量  
        x = self.conv(x, edge_index)  
        return F.relu(x)  # 使用ReLU激活函数  
  
# GCN模型  
class GCN(torch.nn.Module):  
    def __init__(self, in_channels, hidden_channels, out_channels):  
        super(GCN, self).__init__()  
        self.conv1 = GCNLayer(in_channels, hidden_channels)  
        self.conv2 = GCNLayer(hidden_channels, out_channels)  
  
    def forward(self, x, edge_index):  
        # 第一层GCN  
        x = self.conv1(x, edge_index)  
        # 第二层GCN  
        x = self.conv2(x, edge_index)  
        return x  # 最后的输出特征  

数据集

       由于网络上缺乏现有的合适数据集,我决定自己去野外进行拍摄,收集行人轨迹数据并制作了一个全新的数据集。我在不同场景下拍摄了多个行人的运动轨迹,并使用精确的传感器来捕捉行人的位置和移动信息。通过现场拍摄,我能够捕捉到真实的行人运动情况,包括不同速度、方向和交互行为等多样性。这个自制的数据集将为基于深度学习的行人轨迹预测算法的研究提供有力的支持,并为该领域的发展做出积极贡献。

毕业设计:基于深度学习的行人轨迹预测算法 人工智能

       为了扩充数据集的规模和多样性,我还采用了数据扩充的技术。通过对已有的行人轨迹数据进行平移、旋转和缩放等操作,我生成了更多样化的训练样本。此外,我还利用插值和曲线拟合等方法对行人轨迹数据进行处理,生成更多真实的行人运动情况。这些数据扩充的方法有效地增加了数据集的规模和多样性,提高了模型的泛化能力和性能。通过数据扩充,我能够更全面地评估和改进基于深度学习的行人轨迹预测算法的性能,使其在实际应用中更具可靠性和鲁棒性。数据扩充为研究者提供了更多实验和验证的机会,促进了该领域的发展和进步。

模型训练

       基于深度学习框架PyTorch实现的STIA-TPNet模型,该模型使用了Python编程语言,并在搭载了Intel Core i9-9900X CPU和三块NVIDIA TITAN Xp显卡的服务器上进行了训练。模型的训练环境为Ubuntu 16.04 LTS操作系统,CUDA 9.0显卡驱动版本,以及PyCharm 2022软件开发平台。在数据处理方面,使用了Numpy工具包实现向量或张量的操作,Matplotlib工具包完成图形绘制。数据集按照70%、10%、20%的比例划分为训练集、验证集和测试集,并针对不同数据集设置了不同的参数。在神经网络结构和参数上,详细描述了模型中各个组件的维度和配置,包括LSTM编码器和GRU解码器的维度,以及空间交互注意力层的输入和输出维度等。在超参数设置上,确定了batch size的大小、迭代次数以及学习率等参数,以使得损失值下降最大且比较稳定。

       模型训练是一个迭代的过程,包括数据准备、模型选择、训练、评估和调参等步骤。通过合理的训练和调参,我们可以得到一个性能良好的模型,为实际应用提供可靠的预测和分类结果。

毕业设计:基于深度学习的行人轨迹预测算法 人工智能

       模型训练过程中,我们使用训练数据集对所选的模型进行训练。为了优化模型的性能,我们通常采用梯度下降等优化算法对模型的参数进行迭代更新。这些优化算法基于损失函数的梯度信息,通过逐步调整参数来最小化损失函数,从而提高模型的预测精度和泛化能力。

       评估的目的是了解模型在未见过的数据上的表现,以及确定模型的最佳性能。评估指标的选择对于判断模型的性能至关重要。常用的评估指标包括精度、召回率、F1值等。这些指标可以帮助我们了解模型在不同方面的性能表现,如分类的准确度、召回率等。

毕业设计:基于深度学习的行人轨迹预测算法 人工智能

       一旦模型训练完成并进行了初步评估,我们通常会根据评估结果对模型进行调参。调参是优化模型性能的重要步骤,通过调整超参数,我们可以进一步改善模型的性能。超参数是在训练之前需要设置的参数,如学习率、迭代次数、正则化强度等。通过反复试验和比较,我们可以找到一组最佳的超参数组合,使模型在评估指标上达到最佳性能。

相关代码示例:

model = Sequential()  
model.add(LSTM(32, input_shape=(trajectory_data.shape[1], trajectory_data.shape[3]))) 
model.add(Dense(1)) 
model.compile(optimizer='adam', loss='mean_squared_error')  
  
model.fit(trajectory_data[:, :-1, :, :], trajectory_data[:, -1:, :, :], batch_size=32, epochs=10)  
  
predicted_trajectories = model.predict(trajectory_data[:, :-1, :, :])  
  
for i in range(10):  # 绘制前10个行人的轨迹作为示例  
    plt.figure(figsize=(8, 6))  
    plt.plot(trajectory_data[i, :, 0], trajectory_data[i, :, 1], label='True Trajectory')  
    plt.plot(predicted_trajectories[i, :, 0], predicted_trajectories[i, :, 1], label='Predicted Trajectory')  
    plt.legend()  
    plt.show()

更多帮助

  • 22
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值