都是荷兰数学家,但按前者名字命名的数论中估计指数和的方法至今很有影响,此方法中的A步骤是以德国著名数学家Weyl命名的不等式,这个不等式早就有,而J.G.van der Corput的贡献在于1922年创造出深刻的B步骤。应用Weyl不等式的另一个发展方向是苏俄数学家I.Vinogradov搞的。
反观van der Waerden,以前只知道他写的《代数学》一书,最近发现他关于将全体正整数分成几个集合以后其中一个存在任意长的算术级数的结果,虽经许多人的努力仍然未知,近日举出反例说明符号空间不是紧致的,这下拓扑方法毋庸置疑错了,估计此结果的错误导致Tao等人研究推广到素数的获奖工作也是错的。这方面错误的Furstenburg最近却获阿贝尔奖。
又看到van der Waerden写的翻译成中文的《代数几何引论》一书,里面许多概念,例如“流形”跟严格的黎曼几何中的定义完全不同,已经过时不用,Weyl的所谓名著《黎曼面思想》也类似,估计苏步青、谷超豪和胡和生研究的几何学也类似。陆洪文不懂现在的微分流形理论,因为他只看观念错误的旧书。