-HMK 2 for NOIP(30/100) 多刷题多刷题!!!

版权声明:本文为博主原创文章,未经博主允许你想转还是转吧总之我这点东西还有版权这说法吗呵呵呵呵…… https://blog.csdn.net/AVALON_X/article/details/78325187

关于题目

来自曾老的集训期间的特别的周末作业


作业被坑的一逼。。。。。。
第一题看出来是字典树后打了代码就没去测试了(好像当时也不知道怎么测)爆0。。。
第二道题没有及时对答案取模也是标答挂的只剩30分。。。。。
否则200应该妥妥的。。。
最近一周开始有点懒散了,得在这周把Vjudge上的Dp的(3)(4)做了。。。
题感还行,但是代码能力还是弱orz(谁叫你总是不自己手造大样例
据说明天的题会很难,求过。。。orz

代码:

T1:姓名匹配

problem

【题目描述】
有 n 个同学,他们分别有一个真名和假名。现在你知道这些真名和假名,但是你不知道
他们的对应关系。你认为,真名和假名之间的最长公共前缀越长,他们越有可能相匹配。现
在希望你求得这些最长公共前缀和可能的最大值为多少。
【输入格式】
第一行一个整数 n,表示共有 n 个同学。
接下来 n 行,表示 n 个真名。
接下来 n 行,表示 n 个假名。
【输出格式】
共一行,输出最大公共前缀和。
【输入样例】
5
gennady
galya
boris
bill
toshik
bilbo
torin
gendalf
smaug
galadriel
【输出样例】
11
【样例解释】
gennady : gendalf : 3
galya : galadriel : 3
boris : smaug : 0
bill : bilbo : 3
torin : torin : 2
【数据范围】
对于 30%的数据:n≤10;
对于 100%的数据:字符串总长度不超过 800000。

solution

建好字典树统计即可。
但是我的模板还不够简单。。。而且还不会字典树计数。。。于是爆0.。。orz

std.cpp

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;

inline int read()
{
    int w=1,x=0;char ch=0;
    while(ch< '0'||ch >'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return w*x;
}

int n,sum=0;
char s[400];
struct node{int cnt,son[30];}tr[80050];

int tot;
void update()
{
    int len=strlen(s),u=0;
    for(int i=0;i<len;i++)
    {
        if(!tr[u].son[s[i]-'a'])
            tr[u].son[s[i]-'a'] = ++tot;
        u = tr[u].son[s[i]-'a'];    
        tr[u].cnt++;        
    }
}

void get_ans()
{
    int len=strlen(s),u=0,i=0;
    while(tr[u].son[s[i]-'a']&&i<len)
    {
        u=tr[u].son[s[i]-'a'];
        if(tr[u].cnt){tr[u].cnt--;sum++;}
        i++;
    }
}


int main()
{
    //freopen("match.in","r",stdin);
    //freopen("match.out","w",stdout);  

    n=read();
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s);
        update();
    }
    for(int i=1;i<=n;i++)
    {
        scanf("%s",s);
        get_ans();
    }   
    cout << sum << endl;
}

T2:杆子的排列

problem

【题目描述】
有高为 1,2,…,n 的 n 根杆子排成一排,从左向右能看到 L 根,从右向左能看到 R 根。
求有多少种可能的排列方式。
【输入格式】
多组数据,第一行一个数 T,表示数据组数。
接下来 T 行,每行三个数 n,L,R,含义如题目描述。
【输出格式】
共 T 行,每行一个数,表示答案。答案可能很大,请对 998244353 取模。
【输入样例】
1
4 1 2
【输出样例】
2
【样例解释】
存在两种情况,分别为{4,1,2,3},{4,2,1,3}。
【数据范围】
对于 30%的数据:T≤5;n≤10;
对于 100%的数据:T≤1000;n<=200

solution

典型的Dp题。。不过要开三维。

状态转移方程

f[i][j][k] = f[i-1][j][k]*(i-2)+f[i-1][j-1][k]+f[i-1][j][k-1]; 
//i:第i小的杆子
//j:左边能看到的杆子数
//k:右边能看到的杆子数
f[i][j][k] %= 998244353;
//就是这个模坑的我只有30分。。。

记得以后计算完立即模,否则会GG。

std.cpp

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;

inline int read()
{
    int w=1,x=0;char ch=0;
    while(ch< '0'||ch >'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return w*x;
}

const int kkk = 205;
long long f[kkk+5][kkk+5][kkk+5];

int t,n,l,r;
int main()
{   
    f[1][1][1] = 1;
    for(int i=2;i<=kkk;i++)
        for(int j=1;j<=i;j++)
            for(int k=1;k<=i;k++)//转移:每次放一个更短的杆子 
            {
                f[i][j][k] = f[i-1][j][k]*(i-2)+f[i-1][j-1][k]+f[i-1][j][k-1]; 
                f[i][j][k] %= 998244353;
            }

    t=read();
    while(t--)
    {
        n=read();   l=read();   r=read();
        cout << f[n][l][r] << endl;
    }
    return 0;
}

T3:树

problem

【题目描述】
给定一棵以 1 为根的树,现在给这棵树重新标号。重新标号后,这棵树的叶节点的值为
它到根的路径上的编号最小的点的编号。
现在想要所有叶子节点的值的乘积最大。请你输出这个值对 1e9+7 取模后的结果。
数据保证叶节点的个数不超过 20。
【输入格式】
第一行一个数 n。
接下来 n-1 行,每行两个整数 x,y。表示 x,y 间存在一条树边。
【输出格式】
一行一个数,表示答案。
【输入样例】
5
1 2
2 4
2 3
3 5
【输出样例】
3
【样例解释】
1,2,3,4,5 重新标号为 4,3,1,5,2,叶节点的值为 3 和 1。乘积为 3。
【数据范围】
对于 10%的数据:n<=10;
对于 50%的数据:n<=2000;
对于 100%的数据:n<=100000。

solution

表示对状压Dp一无所知。。。。。。
完全不知道怎么做。
以下题解的说法。

//一个小的编号,深度大会更优。由此得出编号方式:从小到大编号,一个点的编号确定当且仅当它所有子树的编号均确定。
//那么确定一些店的编号后,就能dfs一遍求出下一个应该编号的叶节点对应的编号。
//所以影响答案的就是叶节点编号的排序。题目中保证叶节点不超过20个,那么状压一下即可解决。
//复杂度为O(2^(叶节点数)*树的大小)
//树上只用保留根节点,叶节点,子节点数大于1的点。

std.cpp

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;

inline int read()
{
    int w=1,x=0;char ch=0;
    while(ch< '0'||ch >'9'){if(ch=='-')w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return w*x;
}

const int N=100005;
const int M=1000000007;
typedef double D;

int siz,cnt,tot,sum,n;
int fst[N],nxt[N*2],tt[N*2],first[N],next[105],to[105];
int size[N],d[N],num[N],leaf[105],f[1048580];
bool save[N];
double g[1048580];

void add(int x,int y){nxt[++cnt]=fst[x];fst[x]=cnt;tt[cnt]=y;}
void inser(int x,int y){next[++siz]=first[x];first[x]=siz;to[siz]=y;}
void dfs(int x,int fa)
{
    int num=0;
    size[x]=1;
    for(int i=fst[x];i;i=nxt[i])
        if(tt[i]^fa)
        {
            d[tt[i]] = d[x] + 1;
            dfs(tt[i],x);
            size[x] += size[tt[i]];
            num++;
        }
    if(num^1)save[x] = true;
    if(num==0)leaf[tot++] = x;
}

void build(int x,int fa,int Fa)
{
    if(save[x]&&Fa)inser(Fa,x);
    if(save[x])Fa=x;
    for(int i=fst[x];i;i=nxt[i])
        if(tt[i]^fa)
            build(tt[i],x,Fa);
}

void DFS(int x)
{
    if(!first[x]){sum+=num[x];return;}
    num[x]=0;
    for(int i=first[x];i;i=next[i])
    {
        DFS(to[i]);
        if(num[to[i]]==size[to[i]])
            num[x] += size[to[i]]+d[to[i]]-d[x]-1,
            sum += d[to[i]]-d[x]-1;
    }
    if(num[x]==size[x]-1)num[x]++,sum++;
}

int main()
{
    n=read();
    for(int x,y,i=1;i<n;i++)
    {
        x=read();y=read();
        add(x,y);add(y,x);
    }
    dfs(1,0);
    save[1]=true;
    build(1,0,0);
    int mx=1<<tot;
    for(int j=0;j<tot;j++)f[1<<j]=1,g[1<<j]=1;
    for(int i=1;i<mx;i++)
    {
        for(int j=0;j<tot;j++)num[leaf[j]]=(i&(1<<j))?(1):(0);
        sum=0;  DFS(1);
        D prod = g[i]*(sum+1);
        int ans=1ll*f[i]*(sum+1)%M;
        for(int j=0;j<tot;j++)
            if(!(i&(1<<j))&&g[i|(1<<j)]<prod)
                g[i|(1<<j)]=prod,
                f[i|(1<<j)]=ans;
    }
    cout << f[mx-1] << endl;
    return 0;
}
阅读更多

没有更多推荐了,返回首页