此账户处于禁言状态,如有疑问联系客服
AIGC探路者
码龄6年
关注
提问 私信
  • 博客:470,789
    社区:22
    470,811
    总访问量
  • 1,620
    原创
  • 1,360
    排名
  • 2,620
    粉丝
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-08-10
博客简介:

A_D_I_D_A_S的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,648
    当月
    30
个人成就
  • 获得2,336次点赞
  • 内容获得25次评论
  • 获得2,062次收藏
  • 代码片获得2,179次分享
创作历程
  • 894篇
    2024年
  • 552篇
    2023年
  • 99篇
    2022年
  • 1篇
    2021年
  • 14篇
    2020年
  • 47篇
    2019年
  • 17篇
    2018年
成就勋章
TA的专栏
  • 最新华为OD机试真题(Python、持续更新)
    付费
    1509篇
  • 最新华为OD机试真题(JavaScript、持续更新)
    付费
    275篇
  • 最新华为OD机试真题(持续更新)
    付费
    277篇
  • 华为OD机试真题详解
    付费
    81篇
  • 华为OD机试题库解析
    付费
    5篇
  • 最新华为OD机试真题(C++、持续更新)
    付费
    315篇
  • 最新华为OD机试真题(Java、持续更新)
    付费
    317篇
  • 人脸动画前沿技术(Face Animation)
    付费
    8篇
  • 互联网大厂机试真题
    付费
    17篇
兴趣领域 设置
  • 人工智能
    计算机视觉人工智能深度学习神经网络cnn生成对抗网络pytorchtransformer视觉检测图像处理AI作画文心一言
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

华为OD机试 - 字母组合

每个数字关联多个字母,关联关系如下:0 关联 “a”,”b”,”c”1 关联 “d”,”e”,”f”2 关联 “g”,”h”,”i”3 关联 “j”,”k”,”l”4 关联 “m”,”n”,”o”5 关联 “p”,”q”,”r”6 关联 “s”,”t”7 关联 “u”,”v”8 关联 “w”,”x”9 关联 “y”,”z”输入一串数字后,通过数字和字母的对应关系可以得到多个字母字符串(要求按照数字的顺序组合字母字符串);屏蔽字符串:屏蔽字符串中的所有字母不能同时在输出的字符串出现
原创
发布博客 2024.11.03 ·
24 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

华为OD机试 - 等和子数组最小和

给定一个数组nums,将元素分为若干个组,使得每组和相等,求出满足条件的所有分组中,组内元素和的最小值。
原创
发布博客 2024.11.03 ·
25 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

华为OD机试 - 不含101的数

小明在学习二进制时,发现了一类不含 101的数,也就是:将数字用二进制表示,不能出现 101 。现在给定一个整数区间 [l,r] ,请问这个区间包含了多少个不含 101 的数?
原创
发布博客 2024.11.03 ·
124 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

华为OD机试 - 找出通过车辆最多颜色

在一个狭小的路口,每秒只能通过一辆车,假设车辆的颜色只有 3 种,找出 N 秒内经过的最多颜色的车辆数量。三种颜色编号为0 ,1 ,2
原创
发布博客 2024.11.03 ·
16 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

华为OD机试 - AI处理器组合

某公司研发了一款高性能AI处理器。每台物理设备具备8颗AI处理器,编号分别为0、1、2、3、4、5、6、7。编号0-3的处理器处于同一个链路中,编号4-7的处理器处于另外一个链路中,不通链路中的处理器不能通信。如下图所示:现给定服务器可用的处理器编号数组array,以及任务申请的处理器数量num,找出符合下列亲和性调度原则的芯片组合。如果不存在符合要求的组合,则返回空列表。
原创
发布博客 2024.11.03 ·
25 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

新华为OD机试最新题库(2024年)

前两天有同学私信我说:华为OD机试又又又更新了,新出了E卷。不过根据同学反馈的题目来看,E卷的绝大部分题目都是随机从之前的D卷、C卷、B卷、以及A卷中抽取的。因此,大家不用担心。同时,这个周末我花费了两天时间,把最新的E卷题目整理出来了,目前已经更新到专栏中,包含详细的题目描述、测试样例、解题思路、以及100%通过的参考代码。
原创
发布博客 2024.11.03 ·
42 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

纽约州立大学布法罗分校(University at Buffalo, UB)2025年全奖博士招生

布法罗市位于美国纽约州西部,是纽约州的第二大城市。作为五大湖地区的重要城市之一,布法罗地处伊利湖和安大略湖之间,紧邻尼亚加拉大瀑布,具有重要的地理位置,连接美国与加拿大,便于通往北美东部的多个主要城市,包括纽约、波士顿、华盛顿、多伦多、底特律、芝加哥和克利夫兰。布法罗的历史可以追溯到19世纪初,在20世纪初因其最早实现电气化而成为美国重要制造和贸易中心。如今,布法罗因其丰富的文化遗产、繁荣的艺术场景和众多历史建筑而闻名,此外还举办多样的文化和音乐节日,展现出独特的历史和文化魅力。
原创
发布博客 2024.11.02 ·
89 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

Hallo 算法实现精准音频驱动视觉合成

在动态肖像动画领域,将静态图像转化为逼真、生动的说话头像一直是一个技术挑战。以往的方法依赖于参数化模型来生成中间面部表示,这限制了生成动画的视觉吸引力和时间一致性。为了解决这些问题,本文提出了一种创新的端到端扩散模型方法——Hallo。这种方法通过分层音频驱动的视觉合成模块,提高了音频输入与视觉输出之间的对齐精度,包括嘴唇、表情和姿态运动。Hallo算法不仅提升了图像和视频质量,还增强了唇部同步的精确度和运动多样性。
原创
发布博客 2024.10.31 ·
27 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

华为OD机试 E卷|字符串分割转换(Python)

给定一个非空字符串S, 其被N个-分隔成 N + 1 的子串, 给定正整数K, 要求除第一个子串外, 其余的子串每K个字符组成新的子串, 并用 -分隔.对于新组成的每一个子串, 如果它含有的小写字母比大写字母多, 则将这个子串的所有大写字母转换为小写字母.反之, 如果它含有的大写字母比小写字母多, 则将这个子串的所有小写字母转换为大写字母; 大小写字母的数量相等时, 不做转换,
原创
发布博客 2024.10.29 ·
23 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

华为OD机试 E卷|字符串变换最小字符串(Python)

给定一个字符串s, 最多只能进行一次变换, 返回变换后能得到的最小字符串 (按照字典序进行比较).变换规则: 交换字符串中任意两个不同位置的字符.
原创
发布博客 2024.10.29 ·
14 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

华为OD机试 E卷 2024|分糖果(Python)

小明从糖果盒里随意抓一把糖果,每次小明会取出一半的糖果分给同学们。当糖果不能平均分配时,小明可以从糖果盒中取出或放回一个糖果。我们需要计算小明最少需要进行多少次操作(取出、放回、平均分配均记一次)来将手中的糖果分至只剩下一颗。
原创
发布博客 2024.10.28 ·
107 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

华为OD机试真题目录|A + B + C + D + E 卷(2024年)

专栏内博客覆盖华为OD机试所有真题,并持续更新中!有超过1500篇文章,覆盖华为OD机试 A + B + C + D + E 卷。
原创
发布博客 2024.10.28 ·
115 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

华为OD机试E卷 2024|商人买卖 or 贪心的商人(Python)

商人经营一家店铺,有number种商品,由于仓库限制每件商品的最大持有数量是item[index]。每种商品的价格是item-price[item_index][day]。商人通过对商品的买进和卖出获取利润。请给出商人在days天内能获取的最大的利润。注:同一件商品可以反复买进和卖出。
原创
发布博客 2024.10.27 ·
17 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

DEGAS:为全息3D头像带来精细表情的新纪元

在3D头像和虚拟角色的创建领域,实现逼真且具有丰富表情的全息表现一直是一个挑战。尽管神经渲染技术在创建全身体和头部头像方面取得了显著进展,但将精细的表情融入全身头像的工作尚未得到充分探索。本文提出了DEGAS(Detailed Expressions on full-body Gaussian Avatars),这是一种基于3D高斯绘制(3DGS)的方法,用于创建具有丰富面部表情的全身头像。DEGAS通过训练一个条件变分自编码器(cVAE),学习身体动作和面部表情作为驱动信号,生成UV布局中的高斯图。为了驱
原创
发布博客 2024.10.27 ·
24 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ACMMM 2024|MMHead:开创性3D面部动画数据集与多模态动画方法

在计算机视觉和多媒体领域,3D面部动画技术因其在AR/VR内容创作、游戏和电影制作等应用中的广泛用途而受到广泛关注。尽管已有研究在音频驱动的3D面部动画方面取得了显著进展,但多模态3D面部动画,尤其是文本引导的3D面部动画,由于缺乏多模态3D面部动画数据集而鲜有探索。为了填补这一空白,本文提出了MMHead,这是一个大规模的多模态3D面部动画数据集,包含了丰富的层次化文本注释。这些注释不仅包括抽象的动作和情感描述,还包括细粒度的面部和头部运动(即表情和头部姿态)描述,以及可能引起这种情感的三种情景。此外,本
原创
发布博客 2024.10.26 ·
33 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SIGGRAPH Asia 2024|TALK-Act:用扩散模型重塑2D说话头像的纹理意识

在数字人和虚拟助手领域,2D说话头像的生成技术已经取得了显著进展。然而,大多数现有工作忽略了对人体动作的显式控制,尤其是在非头部动作,如躯干和手势动作的控制上。为了解决这一问题,本文提出了一种名为TALK-Act的新框架,它能够在只有单目视频短片的情况下,实现高保真的2D头像重演。TALK-Act的核心思想是在扩散模型中增强纹理意识,并提供明确的动作指导。具体来说,作者精心构建了2D和3D结构信息作为中间指导,并通过一个运动增强的纹理对齐模块来增强驱动信号和目标信号之间的联系。此外,他们还构建了一个基于记忆
原创
发布博客 2024.10.26 ·
194 阅读 ·
12 点赞 ·
0 评论 ·
0 收藏

ECCVW 2024|TalkinNeRF:开创性技术实现全身动作捕捉与面部表情合成

在计算机视觉和图形学领域,合成逼真的4D人类动态(包括身体姿态、手势和面部表情)一直是一个挑战。以往的研究通常只关注身体姿态或面部表情,但人类的交流是全身性的,需要综合考虑身体姿态、手势和面部表情。这篇文章提出了TalkinNeRF,这是一个新颖的框架,它能够从单目视频中学习动态神经辐射场(NeRF),以代表全身说话人物的完整4D人体动态。这包括身体姿态、手部动作和面部表情。与以往工作相比,TalkinNeRF能够处理更复杂的手指动作,并在完全未见过的姿势下进行稳健的动画制作。此外,它还可以推广到新的身份,
原创
发布博客 2024.10.26 ·
143 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

NeurIPS 2022|革命性图像动画技术 — Implicit Warping for Animation with Image Sets

这篇论文提出了一种新的隐式变形框架,通过单次跨模态注意力层实现源图像特征的变形,适用于单源和多源图像动画。与传统的基于显式流的方法不同,这篇文章的方法能够更好地处理多源图像,并且能够选择和混合来自不同源图像的最佳特征。与现有的显式基于流的变形方法不同,该方法不需要预测每个关键点的显式变形流,而是通过单层注意力机制在源图像和驱动图像之间找到对应关系,选择最合适的特征进行变形。跨模态注意力层:该层的查询来自驱动图像的关键点,而键和值来自源图像的关键点和特征。
原创
发布博客 2024.10.26 ·
23 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SIGGRAPH Asia 2024|SOTA!PersonaTalk!基于Attention的数字人生成框架!

PersonaTalk: Bring Attention to Your Persona in Visual Dubbing对于以音频驱动的视觉配音,保持并突出说话者的个性化同时合成准确的唇形同步仍然是一个相当大的挑战。现有的方法在捕捉说话者的独特说话风格或保留面部细节方面存在不足。在本文中,我们提出了一种基于注意力的两阶段框架,包括几何构建和面部渲染,用于高保真度和个性化视觉配音。在第一阶段,我们提出了一个风格感知的音频编码模块,通过跨注意力层将说话风格注入音频特征。然后使用风格化后的音频特征来驱动说话
原创
发布博客 2024.10.25 ·
196 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【CV领域导师推荐】浙江大学-崔兆鹏-3D计算机视觉

崔兆鹏,浙江大学计算机学院CAD&CG国家重点实验室“百人计划”研究员、博士生导师。2009和2012年在西安电子科技大学分别获得学士和硕士学位,2017年在加拿大西蒙弗雷泽大学(Simon Fraser University)获得博士学位,指导老师为谭平老师(原达摩院XR实验室负责人)。2017年至2020年在瑞士苏黎世联邦理工学院(ETH Zurich)计算机视觉和几何实验室(CVG)任高级研究员。研究方向是三维计算机视觉,涉及计算机视觉、机器人、计算机图像学等领域。
原创
发布博客 2024.09.02 ·
470 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏
加载更多