能说一本或几本在你在学数学路上对你影响最大的一本书吗?

第一位 知乎琳蛋大:

ytdwdw 的《数学分析高等数学例题选解》V6

这是一本修正我数学品味的启蒙资料,尽管这不是一本“正规”出版的书。

在我学高数的时候群里/贴吧是很流行难题/野题的,看着大佬解答“野题“,想变成大佬的我也试图去啃这些野题,对于不懂的先存着图片,存了非常多,也记录了很多野题的笔记,直到看到了这段话,就是下面的截图这段话,从起初的不以为意,到后面我突然发现我只会保存“好题”,而这些好题对于我除了难似乎没有太大价值,最重要的是我发现我的智商是学不会的,渐渐地,我发现我对这些没有太多兴趣了,浪费了时间还没什么效果…

这本网络资料推荐了《微积分进阶》,大佬推荐大佬,真的服气!

图片

楼红卫《微积分进阶》

真正的辅导书!我真的无法用言语形容这本书的牛逼之处!这本书修正我的数学品味!

告诉我技巧的选择,应该优先正面硬上的一般通法,哪怕过程看着不那么简洁!

在我看了这本书之后,我才明白那些大佬被推荐的好书为什么牛逼?(我之前认为:题目难/看的门槛高/有很多高级知识...那就是好书了)我知道我想要什么知识了;我学会了筛选书/笔记/题目(这本书让我变成了伯乐),我发现那些之前看着“高大上”所谓的名校考研题期末题/考研满分笔记原来那么普通!

我再回看我笔记里的题目,我明白为何换个花样我就不会了,因为我只会背答案/技巧,但我背的技巧不具有普适性!我发现根本没真正看懂答案(“注意到”,自然而然的答案)我开始重新思考答案的整体思路是什么?怎么思考出来的?思路能不能推广?条件能不能减弱?凭什么注意到?我搜过论文/辅导书/问过别人,最终得到的只是冰冷的标准答案!我把可能是同一类型的题目归类,一遍又一遍看答案,终于想出来了一些原因,再用各种题目测试,终于,我有了自己的原创总结!有了能“通杀”这类题的方法!我想这就是做论文吧!

图片

指引你去寻找答案!要/应该思考什么?如何发现问题/研究方向?

图片

我从未在任何一本辅导书见过下面的细节解释!我还是太天真了!

图片

SCIbird 的《我的数学分析积木》

这也是一本非常牛逼的网络资料,完善我的数学学习方式,我从这里面学到如何思考定理/例题/答案. 这些思考方式教材/辅导书不会写,对于我很重要,这里面写了…

图片

第二位 知乎 Matsuda:

推荐 rudin 的 real and complex analysis

大一看的时候其实没能看得很明白,神奇的是,大二看的时候很多之前没咋搞懂的地方瞬间明白了。当然,对这本书的评价也是各有不同,但是四五百页纸写明白实分析与复分析我觉得就是很厉害的事情了。

具体而言,实分析部分从抽象积分引入,用泛函表示引入Lebesgue测度,印象最深的就是riesz表示定理,当年可是12步证明合着书推过好多遍。后面的Lp空间最喜欢的就是稠密性论证。泛函入门部分写的也不错,对于后来学泛函有很大帮助。

复分析部分,用第十章写完了几乎是国内复分析教材大半本书的内容,后面对于最大模原理,全纯Fourier变换都有深入的讲述。印象最深的还是用Hahn-Banach证runge逼近定理,最后一章也是对于runge定理的进一步加强,感觉像是摘录的论文。

虽然很久没看这本书了,但依稀能记得许多这本书中的证明细节(可能是缘于大部分定理都独立推导过吧)。可以说这本书让我真正领略了分析学,把我引入了门。

第三位 知乎 数学人生:

推荐 《one dimensional dynamics》

大学一年级一个偶然的机会阅读了这本书,就直接决定了自己博士的研究方向。

图片

第四位 知乎Moiraine:

第一本是Courant《什么是数学》。刚上初中那会儿数学成绩很好,又提前把初高中的数学都卷了一遍,数学老师就买了这本书送给我。我记得他当时告诉我说:你之前学的那点初等数学不算什么的,你要学真正的数学。也是在这本书里我了解到一点点初等数论和微积分。回想起来那真是纯粹快乐的时光。

第二本是小平邦彦《微积分入门》。初二时在学校图书馆偶遇的,惊为天人。光是实数那一章就啃了好几周,后来半懂不懂的看完了一元的部分。埋下了严肃数学兴趣的种子。

第三本是Vinberg: A Course in Algebra,这真是一本叙述清晰,内容丰富的代数教材。初中毕业后看了一个暑假,没看完。记得jordan标准形式,还有群论里的sylow theorems,都是很美的。这本书的缺陷是Galois理论谈的太少了。后来高中时看柯斯特里金《代数学引论》第三卷才算略知一二,那次也很震撼。

然后就是zorich的数学分析,kodaira的complex analysis,李文威《代数学方法》还有《从微积分到上同调》等等,就不点评了,都是有故事的书,虽然几乎没有哪本是我完整读过的。

第五位 知乎Spec:

《代数学方法1》,真的是高观点,极其优秀的代数书,初入数学圈就听说了此书的神迹,直到一年后才有能力开始看。

二,三章的范畴论是我第一次学范畴看的书,因为一直找不到什么好的中文教材,英文里如gtm005有些专业名词实在看不懂猜不透。(曾尝试某lab的范畴发现甚至没有交换图(?),于是本书也给了我范畴语言的基本观念,在第六章模论里也学到了不同于GTM73中的描述,用范畴论语言来进行定义

第一遍学抽象代数用的GTM73,李文威教授的书在高观点上加深了印象和理解(尤其是一些有点…难的例子),语言精炼有度,又生动有趣(这一切都是虚张声势的线性代数!)不过有些地方也太精炼了(道尽一切?),感觉有时需要大佬的点拨才能看懂…。不过呢每看完一节也会感觉很爽,书上也会情不自禁的留下自己的理解和笔记。

总而言之,虽然书难度很大,但着实优秀。建议和一本其他的抽代或交换代数一起看

期待第三卷!(虽然第二卷的“线性代数”还看不懂555)

参考链接:https://www.zhihu.com/question/555672024/answer/2693355165

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员小球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值