洛谷P1034矩形覆盖题解--zhengjun

题目描述

在平面上有 n n n 个点( n ≤ 50 n \le 50 n50),每个点用一对整数坐标表示。例如:当 n = 4 n=4 n=4 时, 4 4 4 个点的坐标分另为: p 1 p_1 p1( 1 , 1 1,1 1,1), p 2 p_2 p2( 2 , 2 2,2 2,2), p 3 p_3 p3( 3 , 6 3,6 3,6), p 4 p_4 p4( 0 , 7 0,7 0,7),见图一。

A_zjzj

这些点可以用 k k k 个矩形( 1 ≤ k ≤ 4 1 \le k \le 4 1k4)全部覆盖,矩形的边平行于坐标轴。当 k = 2 k=2 k=2 时,可用如图二的两个矩形 s 1 , s 2 s_1,s_2 s1,s2 覆盖, s 1 , s 2 s_1,s_2 s1,s2 面积和为 4 4 4。问题是当 n n n 个点坐标和 k k k 给出后,怎样才能使得覆盖所有点的 k k k 个矩形的面积之和为最小呢?
约定:覆盖一个点的矩形面积为 0 0 0;覆盖平行于坐标轴直线上点的矩形面积也为 0 0 0。各个矩形必须完全分开(边线与顶点也都不能重合)。

输入格式

n k n k nk
x 1 y 1 x_1 y_1 x1y1
x 2 y 2 x_2 y_2 x2y2
. . . . . . ... ... ......
x n y n x_n y_n xnyn
( 0 ≤ x i , y i ≤ 500 0 \le x_i,y_i \le 500 0xi,yi500)

输出格式

输出至屏幕。格式为:

1 1 1 个整数,即满足条件的最小的矩形面积之和。

输入输出样例
输入 #1 复制
4 2
1 1
2 2
3 6
0 7
输出 #1 复制
4

思路

这么一道数据小的题目如果不用搜索真是对不起这数据

代码

#include<bits/stdc++.h>
using namespace std;
int n,m,ans=0x3fffffff,t;
struct zj1{
	int x,y;
};
zj1 f[51];
struct zj2{
	int a,b,c,d;
};
zj2 k[5];
bool check(int x){
	for(int i=1;i<=t;i++){
		if(i==x)continue;
		if(k[i].a<=k[x].a&&k[i].a>=k[x].b&&k[i].c>=k[x].c&&k[i].c<=k[x].d)return 0;
		if(k[i].a<=k[x].a&&k[i].a>=k[x].b&&k[i].d>=k[x].c&&k[i].d<=k[x].d)return 0;
		if(k[i].b<=k[x].a&&k[i].b>=k[x].b&&k[i].c>=k[x].c&&k[i].c<=k[x].d)return 0;
		if(k[i].b<=k[x].a&&k[i].b>=k[x].b&&k[i].d>=k[x].c&&k[i].d<=k[x].d)return 0;
	}
	return 1;
}
void dfs(int x){
	int sum=0;
	for(int i=1;i<=t;i++)
		sum+=(k[i].a-k[i].b)*(k[i].d-k[i].c);
	if(x>n){
		ans=min(ans,sum);
		return;
	}
	if(sum>=ans)
	    return;
	for(int j=1;j<=t;j++){
		int a=k[j].a,b=k[j].b,c=k[j].c,d=k[j].d;
		k[j].a=max(f[x].x,k[j].a);
		k[j].b=min(f[x].x,k[j].b);
		k[j].c=min(f[x].y,k[j].c);
		k[j].d=max(f[x].y,k[j].d);
		if(check(j))
			dfs(x+1);
		k[j].a=a;
		k[j].b=b;
		k[j].c=c;
		k[j].d=d;
	}
	if(t<m){
		t++;
		k[t].b=f[x].x;
		k[t].a=f[x].x;
		k[t].c=f[x].y;
		k[t].d=f[x].y;
		dfs(x+1);
		t--;
	}
	return;
}
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
		scanf("%d%d",&f[i].x,&f[i].y);
	dfs(1);
	cout<<ans;
	return 0;
}

谢谢–zhengjun

过河卒是个典型的动态规划问题。首先,我们将整个棋盘看作个二维数组,数组的每个元素表示到达该位置的路径数目。然后,我们根据题目给出的条件,逐步更新数组中的元素,直到计算出到达目标位置的路径数目。 具体的解题思路如下: 1. 首先,我们可以将马的位置设置为0,表示无法经过该位置。 2. 然后,我们根据马的位置,更新数组中的元素。对于二维数组中的每个位置,我们根据左边和上边的位置来计算到达当前位置的路径数目。具体地,如果左边和上边的位置都可以经过,那么到达当前位置的路径数目就等于左边和上边位置的路径数目之和。如果左边或上边的位置无法经过,那么到达当前位置的路径数目就等于左边或上边位置的路径数目。 3. 最后,我们输出目标位置的路径数目。 下面是p1002过河卒题解C++代码: ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long a[21][21]; int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2; // 初始化数组,马的位置设置为0 for(int i=0; i<=20; i++) { for(int k=0; k<=20; k++) { a[i][k] = 1; } } a[x2][y2] = 0; // 根据马的位置更新数组中的元素 if(x2 >= 2 && y2 >= 1) a[x2-2][y2-1] = 0; if(x2 >= 1 && y2 >= 2) a[x2-1][y2-2] = 0; if(x2 <= 18 && y2 >= 1) a[x2+2][y2-1] = 0; if(x2 <= 19 && y2 >= 2) a[x2+1][y2-2] = 0; if(x2 >= 2) a[x2-2][y2+1] = 0; if(x2 >= 1) a[x2-1][y2+2] = 0; if(y2 >= 1) a[x2+2][y2-1] = 0; if(y2 >= 2) a[x2+1][y2-2] = 0; // 动态规划计算路径数目 for(int i=1; i<=20; i++) { for(int k=1; k<=20; k++) { if(a[i][k] != 0) { a[i][k] = a[i-1][k] + a[i][k-1]; } } } // 输出目标位置的路径数目 cout << a[x1][y1] << endl; return 0; } ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_zjzj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值