pandas - isin()函数

在pandas中,isin()是一个非常重要的方法,它允许我们根据一个值列表来筛选数据

isin()方法基础

假设我们有一个DataFrame df,其中包含学生的信息:

import pandas as pd

# 创建一个示例DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 筛选Subject列为'Math'或'Science'的学生
selected_students = df[df['Subject'].isin(['Math', 'Science'])]
print(selected_students)

输出:

      Name  Subject  Score
0    Alice     Math     90
1      Bob  Science     85
2  Charlie     Math     92
4      Eve  Science     88

示例2:结合多个条件筛选

isin()方法可以与其他条件筛选方法结合使用,以创建更复杂的筛选条件。

& :且

| :或

import pandas as pd

# 创建一个示例DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 筛选Score大于85且Subject为'Math'或'Science'的学生
combined_filter = df[(df['Score'] > 85) & df['Subject'].isin(['Math', 'Science'])]
print(combined_filter)

输出:

      Name  Subject  Score
0    Alice     Math     90
2  Charlie     Math     92
4      Eve  Science     88

高级用法与技巧

  isin()方法不仅限于简单的值匹配,还可以与其他pandas功能结合使用,以实现更高级的数据筛选。

示例3:筛选DataFrame中多个列的值

我们可以同时检查多个列中的值是否存在于给定的列表中

& :且

| :或

import pandas as pd

# 创建一个示例DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 筛选Name为'Alice'或'Charlie',且Subject为'Math'或'Science'的学生
multi_column_filter = df[(df['Name'].isin(['Alice', 'Charlie']) & df['Subject'].isin(['Math', 'Science']))]
print(multi_column_filter)

输出:

      Name Subject  Score
0    Alice    Math     90
2  Charlie    Math     92

使用 “~”取反来获取数据

data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 筛选Name为不为'Alice'或'Charlie',且Subject为'Math'或'Science'的学生
multi_column_filter = df[(~df['Name'].isin(['Alice', 'Charlie']) & df['Subject'].isin(['Math', 'Science']))]
print(multi_column_filter)

结果:
 

  Name  Subject  Score
1  Bob  Science     85
4  Eve  Science     88

示例4:结合set数据结构使用isin()

使用set数据结构可以更有效地执行isin()操作,尤其是当比较值列表非常大时

import pandas as pd

# 创建一个示例DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
    'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],
    'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)

# 将要匹配的值转换为set以提高效率
subjects_set = {'Math', 'Science'}

# 筛选Subject列为'Math'或'Science'的学生
set_filter = df[df['Subject'].isin(subjects_set)]
print(set_filter)

输出:

      Name  Subject  Score
0    Alice     Math     90
1      Bob  Science     85
2  Charlie     Math     92
4      Eve  Science     88

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值