运用数据可视化来分析中药材市场的数据

需求如下:

需求一: 请用柱形图和折线图在同一个坐标系展示表1数据

需求 请用饼图展示表2数据

需求 请用堆积柱形图展示表3数据

需求 请用雷达图展示表4数据

需求 根据可视化图表撰写1页中药材市场数据分析报告

表格数据如下:

 导入基本模块

%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
# 0.【设置中文字体】
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False

绘制可视化第一个表格数据(柱形和折线融合图)

# 1.【绘制一个柱形和折线共享x轴的图】
# 1.1 准备数据
year_x = np.arange(2014, 2022, 1)  # X轴刻度值(2014-2021)
data_num = np.array([87430,90912,96225,101885,107147,116390,105764,120215]) # 诊疗量
data_speed = np.array([7.40,4.00,5.83,5.81,5.16,8.63,-9.13,13.66]) # 同比增速
# 1.2 创建第一个坐标系实例
ax = plt.subplot2grid((2,3),(0,0),colspan=3)
# 1.3 在第一个坐标系实例上绘制堆积柱形图
bar = ax.bar(year_x ,data_num ,width=0.5 ,color='orange')
# 1.4 创建共享x轴的第二个坐标系实例
ax_right=ax.twinx()
# 1.5 在第二个坐标系实例上绘制折线图
line = ax_right.plot(year_x,data_speed,'m-')
# 1.6 图表辅助元素定制
ax.set_ylabel('诊疗量 (万人次)')
ax_right.set_ylabel('同比增速(%)')  
ax_right.set_ylim(-20,20)
ax.set_title('2014-2021年中国中医类医疗卫生机构诊疗量')

绘制可视化第二个表格数据(饼图)

# 2. 【绘制饼图】
# 2.1 准备数据
ratios = [2.2, 27.9, 56.2, 10.9, 2.8]  # 各年龄段用户比例
labels = ['20岁以下','20-30岁','31-40岁','41-50岁','51岁以上']  # 外侧说明文字
# 2.2 创建坐标系实例绘制饼图
ax2 = plt.subplot2grid((2,3),(1,0))
ax2.pie(ratios,labels=labels,radius=1.5,
       textprops={'fontsize':6},
       wedgeprops={'width':0.75},
       pctdistance=0.75,          #调整数值标签的位置
       autopct='%3.1f%%',
       startangle=0)              #调整购物品类的位置
# 2.3 图表辅助元素定制
ax2.set_title('中药材消费者画像',fontsize=8,pad=20)

绘制第三个可视化第三个表格数据(堆积柱形图)

# 3.【绘制一个堆积柱形图】
# 3.1 准备数据
year_x = np.arange(2019, 2024, 1) # X轴刻度值(2019-2023)
data1 = np.array([20.3,22.0,23.5,22.5,22.3])   # 跨国企业占比
data2 = np.array([79.7,78.0,76.5,77.5,77.7])   # 本土企业占比
xlabels = ['2019年','2020年','2021年','2022年','2023年']
# 3.2 创建坐标系实例并绘制堆积柱形图
ax3 = plt.subplot2grid((2,3),(1,1))
bar_width=0.6
ax3.bar(year_x, data1, width=bar_width)
ax3.bar(year_x, data2, bottom=data1, width=bar_width)
# 3.3 图表辅助元素定制
ax3.set_title('全国药店中药饮片供应商占比', fontsize=6)
ax3.set_xticks(year_x)
ax3.set_xticklabels(xlabels, rotation=60, fontsize=8)

绘制第四个可视化第四个表格数据(雷达图)

# 4. 【绘制一个雷达图】
# 4.1 准备数据
score = np.array([33,45,3,9,10])  # 各品类药品占比
score = np.concatenate((score, [score[0]]))         # 拼接一下,构成闭环
radar_labels = ['化学药','中成药','生物制品','保健品','中药饮片']# 维度标签
radar_labels = np.concatenate((radar_labels, [radar_labels[0]])) # 拼接,构成闭环 
dim_num = len(score)-1     # 维度数 (因为上一行拼接了,所以要减1)
radians = np.linspace(0, 2 * np.pi, dim_num, endpoint=False)
radians = np.concatenate((radians, [radians[0]]))   # 拼接一下,构成闭环
# 4.2 创建极坐标系实例,并绘制雷达图
ax4 = plt.subplot2grid((2, 3), (1, 2), polar=True)
ax4.plot(radians,score,marker='o',
         markersize=2,linewidth=1,color='r')
# 4.3 图表辅助元素定制
# 4.3.1 设置极坐标的标签
angles = radians * 180/np.pi  # 弧度转角度
ax4.set_thetagrids(angles, labels=radar_labels, fontsize=6) # 设置新的刻度标签
# 4.3.2 填充多边形
ax4.fill(radians, score, alpha=0.2)
ax4.set_title('全国药店药品销售额占比', fontsize=8, pad=20)

展示图表

# 5.【展示图表】
plt.tight_layout() # 启用自动紧凑布局
plt.show()

 如图所示:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>