/*汉诺塔的算法就3个步骤:第一,把a上的n-1个盘通过c移动到b。第二,把a上的最下面的盘移到c。第三,因为n-1个盘全在b上了,所以把b当做a重复以上步骤就好了。所以算法看起来就简单多了。不过,思考过程还是很痛苦的,难以理解。递归中会保存数据的好处在这里又得到体现,太神奇了。*/
#include <iostream>
#include<stdio.h>
using namespace std;
void move(int n, char a, char b, char c)
{
if (n == 1)
cout << a << c << endl; //当n只有1个的时候直接从a移动到c
else
{
move(n-1, a, c, b); //第n-1个要从a通过c移动到b
cout << a << c << endl;
move(n-1, b, a, c); //n-1个移动过来之后b变开始盘,b通过a移动到c,这边很难理解
}
}
int main()
{
int n;
cout<<"请输入要移动的块数:" << endl;
cin >> n;
move(n, 'a', 'b', 'c');
system("pause");
return(0);
}