2096: [Poi2010]Pilots
Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 469 Solved: 243
[ Submit][ Status][ Discuss]
Description
Tz又耍畸形了!!他要当飞行员,他拿到了一个飞行员测试难度序列,他设定了一个难度差的最大值,在序列中他想找到一个最长的子串,任意两个难度差不会超过他设定的最大值。耍畸形一个人是不行的,于是他找到了你。
Input
输入:第一行两个有空格隔开的整数k(0<=k<=2000,000,000),n(1<=n<=3000,000),k代表Tz设定的最大值,n代表难度序列的长度。第二行为n个由空格隔开的整数ai(1<=ai<=2000,000,000),表示难度序列。
Output
输出:最大的字串长度。
Sample Input
3 9
5 1 3 5 8 6 6 9 10
5 1 3 5 8 6 6 9 10
Sample Output
4
(有两个子串的长度为4: 5, 8, 6, 6 和8, 6, 6, 9.最长子串的长度就是4)
(有两个子串的长度为4: 5, 8, 6, 6 和8, 6, 6, 9.最长子串的长度就是4)
HINT
Source
用两个单调队列分别维护最大值和最小值,每次选择两个队列中队首元素更靠左的队列进行调整。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define LL long long
#define MAXN 3000005
using namespace std;
int k,n,ans=0,l[2],r[2],a[MAXN],q[2][MAXN],f[MAXN];
int main()
{
scanf("%d%d",&k,&n);
F(i,1,n) scanf("%d",&a[i]);
f[0]=l[0]=l[1]=1;
r[0]=r[1]=0;
F(i,1,n)
{
while (a[q[0][r[0]]]<=a[i]&&l[0]<=r[0]) r[0]--;
q[0][++r[0]]=i;
while (a[q[1][r[1]]]>=a[i]&&l[1]<=r[1]) r[1]--;
q[1][++r[1]]=i;
f[i]=f[i-1];
while (a[q[0][l[0]]]-a[q[1][l[1]]]>k)
f[i]=q[0][l[0]]<q[1][l[1]]?q[0][l[0]++]+1:q[1][l[1]++]+1;
ans=max(ans,i-f[i]+1);
}
printf("%d\n",ans);
}
本文探讨了Tz在尝试成为飞行员时遇到的一个独特挑战:在给定的难度序列中找到满足特定难度差限制的最长子串。通过使用两个单调队列维护最大和最小难度值,实现高效搜索解决方案。
1974

被折叠的 条评论
为什么被折叠?



