bzoj2096【poi2010】Pilots

本文探讨了Tz在尝试成为飞行员时遇到的一个独特挑战:在给定的难度序列中找到满足特定难度差限制的最长子串。通过使用两个单调队列维护最大和最小难度值,实现高效搜索解决方案。

2096: [Poi2010]Pilots

Time Limit: 30 Sec   Memory Limit: 162 MB
Submit: 469   Solved: 243
[ Submit][ Status][ Discuss]

Description

Tz又耍畸形了!!他要当飞行员,他拿到了一个飞行员测试难度序列,他设定了一个难度差的最大值,在序列中他想找到一个最长的子串,任意两个难度差不会超过他设定的最大值。耍畸形一个人是不行的,于是他找到了你。

Input

输入:第一行两个有空格隔开的整数k(0<=k<=2000,000,000),n(1<=n<=3000,000),k代表Tz设定的最大值,n代表难度序列的长度。第二行为n个由空格隔开的整数ai(1<=ai<=2000,000,000),表示难度序列。

Output

输出:最大的字串长度。

Sample Input

3 9
5 1 3 5 8 6 6 9 10

Sample Output

4
(有两个子串的长度为4: 5, 8, 6, 6 和8, 6, 6, 9.最长子串的长度就是4)

HINT

Source





用两个单调队列分别维护最大值和最小值,每次选择两个队列中队首元素更靠左的队列进行调整。





#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define LL long long
#define MAXN 3000005
using namespace std;
int k,n,ans=0,l[2],r[2],a[MAXN],q[2][MAXN],f[MAXN];
int main()
{
	scanf("%d%d",&k,&n);
	F(i,1,n) scanf("%d",&a[i]);
	f[0]=l[0]=l[1]=1;
	r[0]=r[1]=0;
	F(i,1,n)
	{
		while (a[q[0][r[0]]]<=a[i]&&l[0]<=r[0]) r[0]--;
		q[0][++r[0]]=i;
		while (a[q[1][r[1]]]>=a[i]&&l[1]<=r[1]) r[1]--;
		q[1][++r[1]]=i;
		f[i]=f[i-1];
		while (a[q[0][l[0]]]-a[q[1][l[1]]]>k)
			f[i]=q[0][l[0]]<q[1][l[1]]?q[0][l[0]++]+1:q[1][l[1]++]+1;
		ans=max(ans,i-f[i]+1);
	}
	printf("%d\n",ans);
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值