###### poj2528 Mayor’s posters

Mayor's posters
 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 52669 Accepted: 15347

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
• Every candidate can place exactly one poster on the wall.
• All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
• The wall is divided into segments and the width of each segment is one byte.
• Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10


Sample Output

4


Source

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define LL long long
#define pa pair<int,int>
#define MAXN 20005
using namespace std;
struct tree_type
{
int l,r,sum,tag;
}t[MAXN*4];
struct sort_type
{
int data,pos;
}a[MAXN];
int c,n,f[MAXN],ans;
{
int ret=0,flag=1;
char ch=getchar();
while (ch<'0'||ch>'9')
{
if (ch=='-') flag=-1;
ch=getchar();
}
while (ch>='0'&&ch<='9')
{
ret=ret*10+ch-'0';
ch=getchar();
}
return ret*flag;
}
void pushup(int k)
{
t[k].sum=t[k<<1].sum+t[k<<1|1].sum;
}
void pushdown(int k)
{
if (!t[k].tag) return;
t[k<<1].tag=t[k<<1|1].tag=1;
t[k<<1].sum=t[k<<1|1].sum=0;
t[k].tag=0;
}
void build(int k,int x,int y)
{
t[k].l=x;
t[k].r=y;
t[k].tag=0;
t[k].sum=y-x+1;
if (x==y) return;
int mid=(x+y)>>1;
build(k<<1,x,mid);
build(k<<1|1,mid+1,y);
}
int getsum(int k,int x,int y)
{
if (t[k].l==x&&t[k].r==y) return t[k].sum;
pushdown(k);
int mid=(t[k].l+t[k].r)>>1;
if (mid>=y) return getsum(k<<1,x,y);
else if (mid+1<=x) return getsum(k<<1|1,x,y);
else return getsum(k<<1,x,mid)+getsum(k<<1|1,mid+1,y);
}
void cover(int k,int x,int y)
{
if (t[k].l==x&&t[k].r==y)
{
t[k].tag=1;
t[k].sum=0;
return;
}
pushdown(k);
int mid=(t[k].l+t[k].r)>>1;
if (mid>=y) cover(k<<1,x,y);
else if (mid+1<=x) cover(k<<1|1,x,y);
else cover(k<<1,x,mid),cover(k<<1|1,mid+1,y);
pushup(k);
}
bool cmp(sort_type x,sort_type y)
{
return x.data<y.data;
}
int main()
{
//	freopen("input.in","r",stdin);
while(c--)
{
ans=0;
F(i,0,n-1)
{
a[i<<1].pos=i<<1;
a[i<<1|1].pos=i<<1|1;
}
sort(a,a+2*n,cmp);
F(i,0,2*n-1)
{
if (i>0&&a[i].data==a[i-1].data) f[a[i].pos]=f[a[i-1].pos];
else f[a[i].pos]=i+1;
}
build(1,1,2*n);
D(i,n-1,0) if (getsum(1,f[i<<1],f[i<<1|1]))
{
ans++;
cover(1,f[i<<1],f[i<<1|1]);
}
printf("%d\n",ans);
}
}


#### poj2528--Mayor's posters(线段树+离散化)

2014-08-08 19:50:02

#### POJ2528:Mayor's posters(线段树区间更新+离散化)

2013-10-31 15:52:39

#### poj-2528 Mayor's posters 测试数据及答案

2014年11月17日 133KB 下载

#### POJ-2528-Mayor's posters(线段树)

2014-07-04 15:23:16

#### 【POJ】 2528 - Mayor's posters 【线段树+离散化】

2015-04-26 23:04:40

#### Mayor's posters（线段树+特殊离散化）

2017-10-10 23:02:47

#### poj2528Mayor's posters

2017-05-04 21:56:56

#### POJ 2528 Mayor's posters 离散化和线段树题解

2014-06-24 12:37:54

#### Mayor's posters （poj_2528) 线段树 + 区间离散

2016-02-12 11:11:16

#### [POJ 2528] Mayor's posters Splay树

2015-11-18 20:32:21

## 不良信息举报

poj2528 Mayor’s posters