2744: [HEOI2012]朋友圈
Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 791 Solved: 233
[ Submit][ Status][ Discuss]
Description
在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着。一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大数目。
两个国家看成是AB两国,现在是两个国家的描述:
1. A国:每个人都有一个友善值,当两个A国人的友善值a、b,如果a xor b mod 2=1,
那么这两个人都是朋友,否则不是;
2. B国:每个人都有一个友善值,当两个B国人的友善值a、b,如果a xor b mod 2=0
或者 (a or b)化成二进制有奇数个1,那么两个人是朋友,否则不是朋友;
3. A、B两国之间的人也有可能是朋友,数据中将会给出A、B之间“朋友”的情况。
4. 在AB两国,朋友圈的定义:一个朋友圈集合S,满足
S∈A∪ B ,对于所有的i,j∈ S ,i 和 j 是朋友
由于落后的古代,没有电脑这个也就成了每年最大的难题,而你能帮他们求出最大朋 友圈的人数吗?
Input
第一行t<=6,表示输入数据总数。
接下来t个数据:
第一行输入三个整数A,B,M,表示A国人数、B国人数、AB两国之间是朋友的对数;第二行A个数ai,表示A国第i个人的友善值;第三行B个数bi,表示B国第j个人的友善值;
第4——3+M行,每行两个整数(i,j),表示第i个A国人和第j个B国人是朋友。
Output
输出t行,每行,输出一个整数,表示最大朋友圈的数目。
Sample Input
2 4 7
1 2
2 6 5 4
1 1
1 2
1 3
2 1
2 2
2 3
2 4
1 2
2 6 5 4
1 1
1 2
1 3
2 1
2 2
2 3
2 4
Sample Output
5
【样例说明】
最大朋友圈包含A国第1、2人和B国第1、2、3人。
【样例说明】
最大朋友圈包含A国第1、2人和B国第1、2、3人。
HINT
【数据范围】
两类数据
第一类:|A|<=200 |B| <= 200
第二类:|A| <= 10 |B| <= 3000
Source
最大团等于补图的最大点独立集,所以我们建立出原图的补图。
观察发现,A国的奇数点是一个完全图,偶数点是一个完全图,所以A国中最多能选两个人。B国的奇数点之间没有边,偶数点之间没有边,所以B国构成一个二分图。
于是我们就可以枚举A国的选择情况(要分不选、选一个、选两个),相应就会得到B国能选择的一些人,然后在B国的这些人中求二分图的最大独立集。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 3005
#define maxm 5000005
using namespace std;
int na,nb,m,ans,tot,cnt,now;
int a[maxn],b[maxn],p[maxn],match[maxn],head[maxn];
bool g[maxn][maxn],tag[maxn],vst[maxn];
struct edge_type{int next,to;}e[maxm];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add_edge(int x,int y)
{
e[++cnt]=(edge_type){head[x],y};head[x]=cnt;
}
inline bool dfs(int x)
{
if (!tag[x]) return false;
for(int i=head[x];i;i=e[i].next)
{
int y=e[i].to;
if (tag[y]&&!vst[y])
{
vst[y]=true;
if (match[y]==0||dfs(match[y]))
{
match[y]=x;
return true;
}
}
}
return false;
}
int main()
{
na=read();nb=read();m=read();
F(i,1,na) a[i]=read();
F(i,1,nb) b[i]=read();
F(i,1,m)
{
int x=read(),y=read();
g[x][y]=true;
}
F(i,1,nb) if (b[i]%2==1)
{
p[++tot]=i;
F(j,1,nb) if (b[j]%2==0)
{
int tmp=b[i]|b[j],sum=0;
for(;tmp;tmp>>=1) if (tmp&1) sum++;
if (sum%2==0) add_edge(i,j);
}
}
F(i,1,nb) tag[i]=true;
memset(match,0,sizeof(match));
now=0;
F(i,1,tot)
{
memset(vst,false,sizeof(vst));
if (dfs(p[i])) now++;
}
ans=nb-now;
F(i,1,na)
{
memset(tag,false,sizeof(tag));
memset(match,0,sizeof(match));
int sum=0;
F(j,1,nb) if (g[i][j]) tag[j]=true,sum++;
now=0;
F(j,1,tot)
{
memset(vst,false,sizeof(vst));
if (tag[p[j]]&&dfs(p[j])) now++;
}
ans=max(ans,sum-now+1);
}
F(i,1,na) if (a[i]%2==1) F(j,1,na) if (a[j]%2==0)
{
memset(tag,false,sizeof(tag));
memset(match,0,sizeof(match));
int sum=0;
F(k,1,nb) if (g[i][k]&&g[j][k]) tag[k]=true,sum++;
now=0;
F(k,1,tot)
{
memset(vst,false,sizeof(vst));
if (tag[p[k]]&&dfs(p[k])) now++;
}
ans=max(ans,sum-now+2);
}
printf("%d\n",ans);
}

本文针对HEOI2012竞赛中的朋友圈问题进行解析,介绍了一个结合图论与算法技巧来解决该问题的方法。通过分析A、B两国人民之间的友谊关系,运用补图、二分图匹配等概念求解最大朋友圈规模。
1841

被折叠的 条评论
为什么被折叠?



