目录
1.4 Matrix Vector Notation 矩阵向量表示法
2.2 Topic Classification - Training
2.3 Topic Classification - Prediction
2.4 Topic Classification - Improvements
2.6 Language Models as Classifiers
2.6 Feed-forward NN Language Model
2.10 Input and Output Word Embeddings
2.11 Language Model: Architecture
3.1 Convolutional Networks for NLP
1. Deep Learning
- A branch of machine learning 机器学习的一个分支
- Re-branded name for neural networks 神经网络的改名
- Why deep? Many layers are chained together in modern deep learning models 为什么是深度?在现代深度学习模型中,许多层都是连在一起的。
- Neural networks: historically inspired by the way computation works in the brain 神经网络:历史上受到大脑中计算方式的启发
- Consists of computation units called neurons 由称为神经元的计算单元组成
1.2 Feed-forward NN
- Aka multilayer perceptrons 又名多层感知器
- Each arrow carries a weight, reflecting its importance 每个箭头都有一个权重,反映其重要性
- Certain layers have nonlinear activation functions 某些层有非线性激活函数

1.3 Neuron

Each neuron is a function 每个神经元都是一个函数
- given input x, computes real-value (scalar) h 给定输入x,计算实值(标量)

- scales input (with weights, w) and adds offset (bias, b)
- applies non-linear function:
- logistic sigmoid
- hyperbolic sigmoid (tanh)
- rectified linear unit
- w and b are parameters of the model
1.4 Matrix Vector Notation 矩阵向量表示法
- Typically have several hidden units, i.e.

- Each with its own weights (
) and bias term (
)
- Can be expressed using matrix and vector operators 可以用矩阵和向量运算符表示

- Where
a matrix comprisine the weight vectors, and
is a vector of all bias terms
- Non-linear function applied element-wise 非线性函数的单元应用
1.5 Output Layer
- Binary

最低0.47元/天 解锁文章
1385

被折叠的 条评论
为什么被折叠?



