复杂分治 NOI2008 NOIday02
描述
有一个美丽的童话:在天空的尽头有一个"糖果国",这里大到摩天大厦,小 到小花小草都是用糖果建造而成的。更加神奇的是,天空中飘满了五颜六色的糖 果云,很快糖果雨密密麻麻从天而落,红色的是草莓糖,黄色的是柠檬糖,绿色 的是薄荷糖,黑色的是巧克力糖……这时糖果国的小朋友们便会拿出大大小小的 口袋来接天空中落下的糖果,拿回去与朋友们一起分享。
对糖果情有独钟的小 Z 憧憬着能够来到这样一个童话的国度。所谓日有所 思,夜有所梦,这天晚上小 Z 梦见自己来到了"糖果国"。他惊喜地发现,任何时 候天空中所有的云朵颜色都不相同,不同颜色的云朵在不断地落下相应颜色的糖 果。更加有趣的是所有的云朵都在做着匀速往返运动,不妨想象天空是有边界的, 而所有的云朵恰好在两个边界之间做着往返运动。每一个单位时间云朵向左或向 右运动一个单位,当云朵的左界碰到天空的左界,它会改变方向向右运动;当云 朵完全移出了天空的右界,它会改变方向向左运动。
我们不妨把天空想象为一个平面直角坐标系,而云朵则抽象为线段(线段可 能退化为点):

如上图,不妨设天空的左界为 0,右界为 len。图中共有 5 片云朵,其中标 号为 1 的云朵恰好改变方向向右运动,标号为 2 的云朵恰好改变方向向左运动。
忽略云朵的纵坐标,它们在运动过程中不会相互影响。
小 Z 发现天空中会不断出现一些云朵(某个时刻从某个初始位置开始朝某个 方向运动),而有的云朵运动到一定时刻就会从天空中消失,而在运动的过程中 糖果在不断地下落。小 Z 决定拿很多口袋来接糖果,口袋容量是无限的,但袋 口大小却是有限的。例如在时刻 T 小 Z 拿一个横坐标范围为[L, R]的口袋来接糖 果,如果[L, R]存在一个位置 x,该位置有某种颜色的糖果落下,则认为该口袋可 接到此种颜色的糖果。极端情况下,袋口区间可能是一个点,譬如[0,0]、[1,1],但仍然可以接到相应位置的糖果。通常可以接到的糖果总数会很大,因而小 Z 想知道每一次(即拿出口袋的一瞬间)他的口袋可以接到多少种不同颜色的糖果。
糖果下落的时间忽略不计。
输入描述
输入文件第一行有两个正整数 n, len,分别表示事件总数以及天空 的“边界”。
接下来 n 行每行描述一个事件,所有的事件按照输入顺序依次发生。每行的 第一个数 k(k = 1,2,3)分别表示事件的类型,分别对应三种事件:插入事件, 询问事件以及删除事件。输入格式如下:
| 事件类型 | 输入格式 | 说明 |
|---|---|---|
| 插入事件 (天空中出现了一片 云朵) | 1 Ti Ci Li Ri Di | 时刻 Ti,天空中出现了一片 坐标范围为[Li, Ri],颜色为 Ci的 云朵,初始的时候云朵运动方向 为向左(Di = -1)或向右(Di = 1)。满足 0 ≤ Li ≤ Ri ≤ len,Di = -1 或 1。数据保证任何时刻空中不 会出现两片颜色相同的云朵。 |
| 询问事件 (询问一个口袋可以 接到多少种不同颜 色的糖果) | 2 Ti Li Ri | 时刻 Ti,小 Z 用一个坐标范 围为[Li, Ri]的大口袋去接糖果, 询问可以接到多少种不同的糖 果。满足 0 ≤ Li ≤ Ri ≤ len。 |
| 删除事件 (天空中一片云朵消 失了) | 3 Ti Ci | 时刻 Ti,颜色为 Ci的云朵从 天空消失中。数据保证当前天空 中一定存在一片颜色为 Ci的云朵。 |
输出描述
对于每一个询问事件,输出中应包含相应的一行,为该次询 问的答案,即口袋可以接到多少种不同的糖果。
样例输入
10 10 1 0 10 1 3 -1 2 1 0 0 2 11 0 10 2 11 0 9 1 11 13 4 7 1 2 13 9 9 2 13 10 10 3 100 13 3 1999999999 10 1 2000000000 10 0 1 1
样例输出
1 1 0 2 1
数据范围与提示
对于所有的数据,0 ≤ Ti ≤ 2000000000,1 ≤ Ci ≤ 1000000。
数据保证{Ti}为非递减序列即 T1 ≤ T2 ≤ … ≤ Tn-1 ≤ Tn。
对于所有的插入事件,令 Pi = Ri – Li,即 Pi表示每片云朵的长度。
| 数据编号 | n | len | Pi | 数据编号 | n | len | Pi |
|---|---|---|---|---|---|---|---|
| 1 | 20 | 10 | ≤len | 6 | 150000 | 1000 | ≤3 |
| 2 | 200 | 100 | ≤len | 7 | 200000 | 1000 | ≤3 |
| 3 | 2000 | 1000 | ≤len | 8 | 100000 | 1000 | ≤len |
| 4 | 100000 | 10 | ≤len | 9 | 150000 | 1000 | ≤len |
| 5 | 100000 | 100 | ≤2 | 10 | 200000 | 1000 | ≤len |
样例解释
共 10 个事件,包括 3 个插入事件,5 个询问事件以及 2 个删除事件。
时刻 0,天空中出现一片颜色为 10 的云朵,初始位置为[1, 3],方向向左。
时刻 1,范围为[0, 0]的口袋可以接到颜色为 10 的糖果(云朵位置为[0, 2])。
时刻11,范围为[0,10]的口袋可以接到颜色为10的糖果(云朵位置为[10, 12])。
时刻 11,范围为[0, 9]的口袋不能接到颜色为 10 的糖果(云朵位置为[10, 12])。
时刻 11, 天空中出现一片颜色为 13 的云朵, 初始位置为[4, 7], 方向向右。
时刻 13,范围为[9, 9]的口袋可以接到颜色为 10(云朵的位置为[8, 10])和颜色 为 13(云朵的位置为[6, 9])两种不同的糖果。
时刻 13,范围为[10, 10]的口袋仅仅可以接到颜色为 10 的一种糖果(云朵的位 置为[8, 10]),而不可以接到颜色为 13 的糖果(云朵的位置为[6, 9]),。
时刻 100, 颜色为 13 的云朵从天空中消失。
时刻 1999999999,颜色为 10 的云朵从天空中消失。
时刻 2000000000,天空中又出现一片颜色为 10 的云朵,初始位置为[0, 1], 方向向右。
#include <bits/stdc++.h>
using namespace std;
int n,len,len2,len4;
int sum[2][4010][4010],x[1000010],y[1000010];
int lowbit(int x)
{
return x&(-x);
}
int add(int type,int x,int y,int d)
{
x++,y++;
for(int i=x;i<=len2;i+=lowbit(i))
for(int j=y;j<=len4;j+=lowbit(j))
sum[type][i][j]+=d;
}
int Sum(int type,int x,int y)
{
x++,y++;
if (x<=0||y<=0) return 0;
if (x>len2) x=len2;
if (y>len4) y=len4;
int ans=0;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j))
ans+=sum[type][i][j];
return ans;
}
int calc(int type,int x1,int y1,int x2,int y2)
{
return Sum(type,x2,y2)-Sum(type,x2,y1-1)-Sum(type,x1-1,y2)+Sum(type,x1-1,y1-1);
}
int main()
{
scanf("%d%d",&n,&len);
len2=(len<<1),len4=(len<<2);
for(int i=1;i<=n;i++)
{
int op,t,c,l,r,d,ans;
scanf("%d",&op);
if (op==1)
{
scanf("%d%d%d%d%d",&t,&c,&l,&r,&d);
x[c]=(t-d*l+len2)%len2;
y[c]=r-l;
add(0,x[c],y[c]+x[c],1);
add(1,x[c],y[c]-x[c]+len2,1);
}
if (op==2)
{
scanf("%d%d%d",&t,&l,&r);
t%=len2;
ans=0;
int flag=(r==len);
ans+=calc(0,t,l+t,t+r,len4);
ans+=calc(0,0,l+t-len2,t+r-len2-flag,len4);
ans+=calc(1,t-r+len2+flag,l-t,len2,len4);
ans+=calc(1,t-r,l-t+len2,t-1,len4);
printf("%d\n",ans);
}
if (op==3)
{
scanf("%d%d",&t,&c);
add(0,x[c],y[c]+x[c],-1);
add(1,x[c],y[c]-x[c]+len2,-1);
}
}
return 0;
}

551

被折叠的 条评论
为什么被折叠?



