描述
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。
在前期市场调查和站址勘测之后,公司得到了一共 N 个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第 i 个通讯中转站需要的成本为 Pi(1≤i≤N)。
另外公司调查得出了所有期望中的用户群,一共 M 个。关于第 i 个用户群的信息概括为 Ai,Bi 和 Ci :这些用户会使用中转站 Ai 和中转站 Bi 进行通讯,公司可以获益 Ci。(1≤i≤M,1≤Ai,Bi≤N)
THU 集团的 CS&T 公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 – 投入成本之和)
输入描述
输入文件中第一行有两个正整数 N 和 M。
第二行中有 N 个整数描述每一个通讯中转站的建立成本,依次为 P1,P2,…,PN。
以下 M 行,第 i+2 行的三个数 Ai,Bi 和 Ci 描述第 i 个用户群的信息。
所有变量的含义可以参见题目描述。
输出描述
你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。
样例输入
5 5 1 2 3 4 5 1 2 3 2 3 4 1 3 3 1 4 2 4 5 3
样例输出
4
数据范围与提示
100% 的数据中:N≤5000,M≤50000,0≤Ci≤100,0≤Pi≤100。
样例解释
选择建立 1,2,3 号中转站,则需要投入成本 6,获利为 10,因此得到最大收益 4。
代码如下:
#include<cstdio>
#include<cctype>
#include<cstring>
#include<queue>
std::queue<int>q;
const int inf=0x3f3f3f3f,s=0;
struct edge{
int to,nxt,cap;
}e[400005];
int cnt=1,n,m,head[150005],t,sum,iter[150005],level[150005];
inline int min(int a,int b){return a<b?a:b;}
inline int readint(){
int c=getchar(),d=0;
for(;!isdigit(c);c=getchar());
for(;isdigit(c);c=getchar())
d=(d<<3)+(d<<1)+(c^'0');
return d;
}
inline void addedge(int f,int t,int c){
e[++cnt]=(edge){t,head[f],c};
head[f]=cnt;
e[++cnt]=(edge){f,head[t],0};
head[t]=cnt;
}
void bfs(){
level[s]=1;
for(q.push(s);!q.empty();){
int u=q.front();
q.pop();
for(int i=head[u];~i;i=e[i].nxt)
if(e[i].cap&&level[e[i].to]==-1){
level[e[i].to]=level[u]+1;
q.push(e[i].to);
}
}
}
int dfs(int u,int f){
if(!f||u==t)return f;
for(int& i=iter[u];~i;i=e[i].nxt)
if(e[i].cap&&level[e[i].to]>level[u]){
int d=dfs(e[i].to,min(f,e[i].cap));
if(d){
e[i].cap-=d;
e[i^1].cap+=d;
return d;
}else level[e[i].to]=-1;
}
return 0;
}
int dinic(){
for(int flow=0,f;;){
memset(level,-1,sizeof level);
bfs();
if(level[t]<0)return flow;
memcpy(iter,head,sizeof iter);
while(f=dfs(s,inf))flow+=f;
}
}
int main(){
n=readint(),m=readint();
t=n+m+1;
memset(head,-1,sizeof head);
for(int i=1;i<=n;++i){
int p=readint();
addedge(i+m,t,p);
}
for(int i=1;i<=m;++i){
int a=readint(),b=readint(),c=readint();
sum+=c;
addedge(s,i,c);
addedge(i,a+m,inf);
addedge(i,b+m,inf);
}
return!printf("%d\n",sum-dinic());
}

211

被折叠的 条评论
为什么被折叠?



