项目场景:
视频分类项目用到ShuffleNetV2提取每帧图的特征,对于多帧连续图同时提取特征,需要TimeDistributed层包装ShuffleNetV2模型层,此时本人遇到包装问题,问题如下描述。
问题描述
feature_layer = TimeDistributed(ShuffleNet_V2(input_shape=[24, 32, CHANNEL_NUM], output_num=FEATURE_SIZE))(org_input)
File "/home/ml/.local/lib/python3.8/site-packages/keras/engine/base_layer_v1.py", line 765, in __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
File "/home/ml/.local/lib/python3.8/site-packages/keras/layers/wrappers.py", line 271, in call
output_shape = self.compute_output_shape(input_shape)
File "/home/ml/.local/lib/python3.8/site-packages/keras/layers/wrappers.py", line 190, in compute_output_shape
child_output_shape = self.layer.compute_output_shape(child_input_shape)
File "/home/ml/.local/lib/python3.8/site-packages/keras/engine/functional.py", line 470, in compute_output_shape
layer_output_shapes = layer.compute_output_shape(layer_input_shapes)
File "/home/ml/.local/lib/python3.8/site-packages/keras/engine/base_layer_v1.py", line 559, in compute_output_shape
raise NotImplementedError
NotImplementedError
原因分析:
TimeDistributed层包装特征提取层ShuffleNet后,无法计算输出的shape
解决方案:
以下两方法都是定义特征提取模型层后,自主计算特征提取模型层的输出shape
方法一:
Output_shape excludes the batch dimension
layer = hub.KerasLayer(“https://tfhub.dev/some/model/1”, output_shape=(4, 4))
…
Input_shape includes the batch dimension (can be None)
expected_shape = layer.compute_output_shape(input_shape=(10, 2, 4)).as_list()
方法二:
Load KerasLayer
input = …
layer = hub.KerasLayer(“https://tfhub.dev/some/model/1”,)
net = layer(input)
net = tf.keras.Model(input , net)
Add custom compute_output_shape
net.compute_output_shape = lambda x : (x[0],x[1],512)
Create model
model = tf.keras.Sequential([tf.keras.layers.TimeDistributed(net),…])
1141

被折叠的 条评论
为什么被折叠?



