深度学习--环境搭建

1.选择合适的操作系统

选择一个适合你的需求和喜好的 Linux 操作系统,比如 Ubuntu、CentOS 等,此处以Ubuntu为例。

2.安装anaconda创建虚拟环境

  • 下载Anaconda安装程序,此处使用清华镜像源        

wget -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.11-Linux-x86_64.sh
  • 运行安装程序

bash Anaconda3-2021.11-Linux-x86_64.sh
  • 更新环境变量

bash Anaconda3-2021.11-Linux-x86_64.sh
  • 显示当前镜像源

conda config --show channels
  • 配置镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/
conda config --set show_channel_urls yess
  • 创建虚拟环境

        -n 后为虚拟环境名称

conda create -n afison python=3.6
  • 激活环境

source activate afison
  • 退出当前环境

conda deactivate
  • 查看所有环境

conda env list
  • 查看当前环境中安装的所有包及其版本信息

conda list
  • 删除环境

conda env remove -n afison

3.安装与cuda版本对应的pytorch版本

  • 查看cuda版本        release 12.2即为版本号

        以下两种方法皆可

nvcc -V
watch -n 1 nvidia-smi

  • 根据cuda版本去官网找对应的pytorch

        Previous PyTorch Versions | PyTorch        若用镜像源,去掉 -c python

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

4.测试是否安装成功

      进入python环境

python
import torch
print(torch.cuda.is_available()) #检查cuda是否可用
print(torch.version.cuda)        #显示当前cuda版本

        这样就成功了!!!

5.Pycharm远程连接服务器

   (1)本地使用服务器环境

  • File->settings

这一部中的Sync folders记得配置

(2)建立本地与服务器代码同步

添加映射

   (3)同步方式

快捷键同步

Ctrl+S保存及同步到服务器

手动同步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值