假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 + 1 阶 2. 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。 1. 1 阶 + 1 阶 + 1 阶 2. 1 阶 + 2 阶 3. 2 阶 + 1 阶
爬楼梯问题又可以称之为青蛙跳台阶,这是一个经典且基础的动态规划问题,很多初学者刚接触这道题的时候的逻辑思维或许是利用计算机的计算能力穷举每一种情况随后输出,在某种程度上这或许是种解决问题的办法,但是在这问题中,我们仅需要知道有多少种爬楼梯方式即可,并不需要知道具体的某种爬楼梯方式。
举个简单的例子,把大象关进冰箱需要三步即可,即:
打开冰箱 -> 把大象放进去 -> 关冰箱门
我们仅需知道需要三步即可,而不用回答具体每一步是什么样的,因为这道题问的就这么多。
算法逻辑
为了方便理解,我列举了爬1 ~ 4阶楼梯的不同方案
爬1阶楼梯:
有且只有一种方案:爬1阶楼梯
爬2阶楼梯:
第一种方案:1 + 1 = 2
第二种方案: 2 = 2 //一下子迈两步
爬3阶楼梯:
第一种方案:1 + 1 + 1 = 3
第二种方案:2 + 1 = 3
第三种方案:1 + 2 = 3
爬4阶楼梯:
第一种方案:1 + 1 + 1 + 1 = 4
第二种方案:1 + 1 + 2 = 4
第三种方案:1 + 2 + 1 = 4
第四种方案:2 + 1 + 1 = 4
第五种方案:2 + 2 = 4
不难发现,爬4阶楼梯的方案数量 = 爬3阶楼梯的方案数量 + 爬2 阶楼梯的方案数量2
我们可以列出动态规划方程:
F[i] = F[i - 1] + F[i - 2]
代码实现
第一步
初始化,爬前两阶楼梯的方案数量是可以穷举出来的
jump_type = [1,2] //爬1阶有1种方式,爬2阶有2种方式
number = 输入要爬的楼梯阶数
jump_type = [1,2] #跳到一台阶有1种跳法,跳到二台阶有2种跳法
number = int(input())
第二步
jump_type_fun(number) = 函数实现计算动态规划方程
def jump_type_fun(number):
for i in range( 2, number - 1):
jump_type.append(jump_type[i - 1] + jump_type[i - 2])
count = jump_type[0] + jump_type[1]
count = count + jump_type[i]
return count
第三步
输出,爬前两阶楼梯的方案数量是可以直接输出的,大于等于三阶之后通过jump_type_fun(number)函数进行输出即可
if number == 1 or number == 2:
print(jump_type[number - 1])
else:
print(jump_type_fun(number))
完整代码
jump_type = [1,2]
number = int(input())
def jump_type_fun(number):
for i in range( 2, number - 1):
jump_type.append(jump_type[i - 1] + jump_type[i - 2])
count = jump_type[0] + jump_type[1]
count = count + jump_type[i]
return count
if number == 1 or number == 2:
print(jump_type[number - 1])
else:
print(jump_type_fun(number))