能发一区的idea:CNN+多模态!创新套路强烈推荐!

AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!

2025深度学习发论文&模型涨点之——CNN+多模态

CNN在多模态任务中常用于提取不同模态数据的空间特征,并与其他模态的特征进行融合。例如,在医学图像融合中,CNN可以提取影像数据的空间结构特征,与其他模态(如文本或时间序列)的特征进行融合,以提升决策的准确性。此外,CNN与Transformer的结合也被广泛研究,通过融合CNN的局部特征提取能力和Transformer的全局建模能力,实现更高效的多模态特征融合。

  1. CNN在跨模态任务中表现出色,例如用于音频-视觉匹配识别的3D卷积神经网络(3D-CNN)。

  2. 这种架构通过联合空间和时间信息,将音频和视觉模态映射到同一表示空间中,显著提升了匹配性能。

  3. 在目标检测任务中,CNN与Transformer结合的双模态特征融合算法可以同时处理红外和可见光图像,显著提升了检测精度。

小编整理了一些CNN+多模态论文】合集,以下放出部分,全部论文PDF版皆可领取。

需要的同学

回复“CNN+多模态”即可全部领取

论文精选

论文1:

MMTM: Multimodal Transfer Module for CNN Fusion

MMTM:用于CNN融合的多模态转移模块

方法

    • 多模态转移模块(MMTM):提出了一种用于多模态CNN融合的模块,通过在不同层次的特征中插入MMTM,实现慢速模态融合。

    • 挤压和激励操作:利用挤压操作将特征的空间维度压缩,生成全局特征描述符,然后通过激励操作对通道特征进行重新校准。

    • 多模态特征融合:通过联合表示学习,将不同模态的特征融合在一起,增强特征的交互性。

      图片

    创新点

        • 慢速融合的优势:通过在中间层插入MMTM,实现了多模态特征的逐步融合,相比传统的晚期融合方法,提升了性能。例如,在手势识别任务中,MMTM方法比晚期融合提升了0.73%的准确率。

        • 跨模态校准:MMTM能够利用一个模态的信息来校准另一个模态的特征,特别是在低层特征相关性较低的情况下,这种校准机制显著提升了性能。

        • 计算效率:通过挤压操作,MMTM能够在不同空间维度的特征之间进行融合,避免了复杂的特征对齐操作,提高了计算效率。    

          图片

        论文2:

        MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

        MobileNets:用于移动视觉应用的高效卷积神经网络

        方法

            • 深度可分离卷积:引入深度可分离卷积,将标准卷积分解为深度卷积和逐点卷积,显著减少了计算量和模型大小。

            • 宽度乘数和分辨率乘数:通过两个全局超参数——宽度乘数和分辨率乘数,灵活调整模型的大小和计算复杂度。

            • 轻量化架构设计:设计了一种轻量化的网络架构,适用于移动和嵌入式设备,同时保持较高的准确性。

              图片

            创新点

                  • 计算效率提升:通过深度可分离卷积,将计算量减少了8到9倍,同时只损失了少量的准确性。例如,MobileNet在ImageNet分类任务中,相比标准卷积网络,计算量减少了569M到569M,参数数量减少了4.2M到4.2M。

                  • 灵活的模型调整:通过宽度乘数和分辨率乘数,可以灵活地调整模型的大小和计算复杂度,以适应不同的应用场景。

                  • 广泛的适用性:MobileNet不仅在图像分类任务中表现出色,还成功应用于目标检测、细粒度分类、人脸属性和大规模地理定位等多种任务。

                    图片


                  论文3:

                  Multimodal Convolutional Neural Networks for Matching Image and Sentence

                  用于图像和句子匹配的多模态卷积神经网络

                  方法

                  • 多模态卷积神经网络(m-CNN):提出了一个端到端的框架,利用卷积架构来处理图像表示、词组成以及图像和句子之间的匹配关系。

                  • 图像CNN和匹配CNN:使用图像CNN生成图像表示,匹配CNN生成图像和句子片段的联合表示。

                  • 多级匹配:通过在不同层次(单词、短语和句子)上进行匹配,充分利用了图像和句子之间的匹配关系。

                    图片

                  创新点

                        • 多级匹配关系的充分利用:通过在单词、短语和句子三个层次上进行匹配,m-CNN能够更全面地捕捉图像和句子之间的匹配关系,相比其他方法在Flickr8K和Flickr30K数据集上分别提升了14.9%和33.6%的准确率。

                        • 卷积架构的应用:首次将卷积架构应用于图像和句子匹配问题,通过卷积和池化操作,有效地组合句子的语义片段,并学习图像与这些片段之间的交互。

                        • 端到端训练:所有参数(包括图像CNN、匹配CNN和MLP)在匹配实例的监督下联合学习,提高了模型的整体性能。

                          图片


                        论文4:

                        ParkPredict+: Multimodal Intent and Motion Prediction for Vehicles in Parking Lots with CNN and Transformer

                        ParkPredict+:用于停车场中车辆意图和运动预测的多模态CNN和Transformer模型

                        方法

                          • CNN意图预测模型:利用CNN从局部上下文信息中预测车辆的意图,模型对全局地图和意图数量具有鲁棒性。

                          • Transformer轨迹预测模型:结合Transformer架构,利用轨迹历史、图像历史和预测意图生成未来轨迹序列。

                          • 多模态预测:通过结合意图预测和轨迹预测,生成多模态的意图和轨迹分布。

                            图片

                          创新点

                              • 意图预测的高准确性:CNN意图预测模型在Top-3预测中达到了几乎100%的准确率,显著优于传统的EKF方法。

                              • 轨迹预测的性能提升:Transformer轨迹预测模型在短期和长期预测中均优于EKF方法,特别是在长期预测中,位置误差和航向误差显著降低。

                              • 多模态预测能力:通过结合意图和图像输入,模型能够生成多种可能的轨迹,适应复杂的停车场场景。

                                图片


                                 

                              小编整理了CNN+多模态文代码合集

                              需要的同学

                              回复“CNN+多模态 ”即可全部领取

                              评论
                              添加红包

                              请填写红包祝福语或标题

                              红包个数最小为10个

                              红包金额最低5元

                              当前余额3.43前往充值 >
                              需支付:10.00
                              成就一亿技术人!
                              领取后你会自动成为博主和红包主的粉丝 规则
                              hope_wisdom
                              发出的红包
                              实付
                              使用余额支付
                              点击重新获取
                              扫码支付
                              钱包余额 0

                              抵扣说明:

                              1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                              2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                              余额充值