AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!
2025深度学习发论文&模型涨点之——CNN+多模态
CNN在多模态任务中常用于提取不同模态数据的空间特征,并与其他模态的特征进行融合。例如,在医学图像融合中,CNN可以提取影像数据的空间结构特征,与其他模态(如文本或时间序列)的特征进行融合,以提升决策的准确性。此外,CNN与Transformer的结合也被广泛研究,通过融合CNN的局部特征提取能力和Transformer的全局建模能力,实现更高效的多模态特征融合。
-
CNN在跨模态任务中表现出色,例如用于音频-视觉匹配识别的3D卷积神经网络(3D-CNN)。
-
这种架构通过联合空间和时间信息,将音频和视觉模态映射到同一表示空间中,显著提升了匹配性能。
-
在目标检测任务中,CNN与Transformer结合的双模态特征融合算法可以同时处理红外和可见光图像,显著提升了检测精度。
小编整理了一些CNN+多模态【论文】合集,以下放出部分,全部论文PDF版皆可领取。
需要的同学
回复“CNN+多模态”即可全部领取
论文精选
论文1:
MMTM: Multimodal Transfer Module for CNN Fusion
MMTM:用于CNN融合的多模态转移模块
方法
-
多模态转移模块(MMTM):提出了一种用于多模态CNN融合的模块,通过在不同层次的特征中插入MMTM,实现慢速模态融合。
-
挤压和激励操作:利用挤压操作将特征的空间维度压缩,生成全局特征描述符,然后通过激励操作对通道特征进行重新校准。
-
多模态特征融合:通过联合表示学习,将不同模态的特征融合在一起,增强特征的交互性。
创新点
-
慢速融合的优势:通过在中间层插入MMTM,实现了多模态特征的逐步融合,相比传统的晚期融合方法,提升了性能。例如,在手势识别任务中,MMTM方法比晚期融合提升了0.73%的准确率。
-
跨模态校准:MMTM能够利用一个模态的信息来校准另一个模态的特征,特别是在低层特征相关性较低的情况下,这种校准机制显著提升了性能。
-
计算效率:通过挤压操作,MMTM能够在不同空间维度的特征之间进行融合,避免了复杂的特征对齐操作,提高了计算效率。
论文2:
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets:用于移动视觉应用的高效卷积神经网络
方法
-
深度可分离卷积:引入深度可分离卷积,将标准卷积分解为深度卷积和逐点卷积,显著减少了计算量和模型大小。
-
宽度乘数和分辨率乘数:通过两个全局超参数——宽度乘数和分辨率乘数,灵活调整模型的大小和计算复杂度。
-
轻量化架构设计:设计了一种轻量化的网络架构,适用于移动和嵌入式设备,同时保持较高的准确性。
创新点
-
计算效率提升:通过深度可分离卷积,将计算量减少了8到9倍,同时只损失了少量的准确性。例如,MobileNet在ImageNet分类任务中,相比标准卷积网络,计算量减少了569M到569M,参数数量减少了4.2M到4.2M。
-
灵活的模型调整:通过宽度乘数和分辨率乘数,可以灵活地调整模型的大小和计算复杂度,以适应不同的应用场景。
-
广泛的适用性:MobileNet不仅在图像分类任务中表现出色,还成功应用于目标检测、细粒度分类、人脸属性和大规模地理定位等多种任务。
论文3:
Multimodal Convolutional Neural Networks for Matching Image and Sentence
用于图像和句子匹配的多模态卷积神经网络
方法
-
多模态卷积神经网络(m-CNN):提出了一个端到端的框架,利用卷积架构来处理图像表示、词组成以及图像和句子之间的匹配关系。
-
图像CNN和匹配CNN:使用图像CNN生成图像表示,匹配CNN生成图像和句子片段的联合表示。
-
多级匹配:通过在不同层次(单词、短语和句子)上进行匹配,充分利用了图像和句子之间的匹配关系。
创新点
-
多级匹配关系的充分利用:通过在单词、短语和句子三个层次上进行匹配,m-CNN能够更全面地捕捉图像和句子之间的匹配关系,相比其他方法在Flickr8K和Flickr30K数据集上分别提升了14.9%和33.6%的准确率。
-
卷积架构的应用:首次将卷积架构应用于图像和句子匹配问题,通过卷积和池化操作,有效地组合句子的语义片段,并学习图像与这些片段之间的交互。
-
端到端训练:所有参数(包括图像CNN、匹配CNN和MLP)在匹配实例的监督下联合学习,提高了模型的整体性能。
论文4:
ParkPredict+: Multimodal Intent and Motion Prediction for Vehicles in Parking Lots with CNN and Transformer
ParkPredict+:用于停车场中车辆意图和运动预测的多模态CNN和Transformer模型
方法
-
CNN意图预测模型:利用CNN从局部上下文信息中预测车辆的意图,模型对全局地图和意图数量具有鲁棒性。
-
Transformer轨迹预测模型:结合Transformer架构,利用轨迹历史、图像历史和预测意图生成未来轨迹序列。
-
多模态预测:通过结合意图预测和轨迹预测,生成多模态的意图和轨迹分布。
创新点
-
意图预测的高准确性:CNN意图预测模型在Top-3预测中达到了几乎100%的准确率,显著优于传统的EKF方法。
-
轨迹预测的性能提升:Transformer轨迹预测模型在短期和长期预测中均优于EKF方法,特别是在长期预测中,位置误差和航向误差显著降低。
-
多模态预测能力:通过结合意图和图像输入,模型能够生成多种可能的轨迹,适应复杂的停车场场景。
小编整理了CNN+多模态论文代码合集
需要的同学
回复“CNN+多模态 ”即可全部领取