本文整理转载自:
一、基本
SQL的limit语法的如以下形式
SELECT * FROM table
LIMIT
[
offset
,]
rows
|
rows
OFFSET
offset
当省略
offset
的时候,
offset
作为
0
处理,表示提取查询到的前
rows
条数据;
当
offse
t>
=0
时候,表示提取查询到的
从
offset
开始的
rows
条数据;此时如果
rows
<0
表示
提取查询到的
从
offset
开始的
所有
数据
当offset
<0
的时候,表示提取查询到的除出后
rows
条数据的所有数据,即剔除
last row
-
rows
到
last rows
之间的
-
rows
条数据
另外,如果
rows
大于实际查询的数据条数,则取
rows
为实际查询的数据条数。
二、实例
实例1
检索记录行 6-15
SELECT * FROM table LIMIT 5,10;
为了检索从某一个偏移量到记录集的结束所有的记录行,可以指定
rows
参数为 -1:
实例2
检索记录行 96-last
SELECT * FROM table LIMIT 95,-1;
如果只给定
rows
参数,它表示前
rows
条数据;换句话说,LIMIT n 等价于 LIMIT 0,n
实例3
检索前 5 个记录行
SELECT * FROM table LIMIT 5;
实例4
返回第6-15行数据
select * from table LIMIT 5,10;
或
select * from table LIMIT 5;
或
select * from table LIMIT 0,5;
实例5
返回0到
last row
-rows的数据
select * from class limit
10
,
-1
或
select * from class limit
-1
OFFSET
10
假如现在class表中有100条数据,则返回的是0开始的90条数据,即0到(100-
10)
三、性能
3.1、基本
1、offset比较小的时候。
select * from yanxue8_visit limit 10,10
多次运行,时间保持在0.0004-0.0005之间
Select
*
From yanxue8_visit Where vid >=(
Select
vid
From yanxue8_visit Order By vid limit 10,1
) limit 10
多次运行,时间保持在0.0005-0.0006之间,主要是0.0006
结论:
偏移offset较小的时候,直接使用limit较优。这个显然是子查询的原因。
2、offset大的时候。
select * from yanxue8_visit limit 10000,10
多次运行,时间保持在0.0187左右
Select
*
From yanxue8_visit Where vid >=(
Select
vid
From yanxue8_visit Order By vid limit 10000,1
) limit 10
多次运行,时间保持在0.0061左右,只有前者的1/3。可以预计offset越大,后者越优。
3.2、性能优化:
方案1.
Select * From cyclopedia Where ID>=(
Select Max(ID) From (
Select ID From cyclopedia Order By ID limit 90001
) As tmp
) limit 100;
方案2.
Select * From cyclopedia Where ID>=(
Select Max(ID) From (
Select
ID
From cyclopedia Order By ID limit 90000,1
) As tmp
) limit 100;
同样是取90000条后100条记录,第1句快还是第2句快?
第1方案是先取了前90001条记录,取其中最大一个ID值作为起始标识,然后利用它可以快速定位下100条记录
第2方案择是仅仅取90000条记录后1条,然后取ID值作起始标识定位下100条记录
第1方案执行结果.100 rows in set (0.23) sec
第2方案执行结果.100 rows in set (0.19) sec
很明显第2方案胜出.
因为这里
ID
是
主键,所以不会去做全表扫描,而是直接返回
limit offset+length条记录,这样看来limit比起MS-SQL的Top性能还是要提高不少的.
其实第2个方案完全可以简化成
Select * From cyclopedia Where ID>=(
Select
ID
From cyclopedia limit 90000,1
)limit 100;
直接利用第90000条记录的ID,不用经过Max运算,这样做理论上效率因该高一些,但在实际使用中几乎看不到效果,因为本身定位ID返回的就是1条记录,Max几乎不用运作就能得到结果,但这样写更清淅明朗,省去了画蛇那一足.
可是,既然MySQL有limit可以直接控制取出记录的位置,为什么不干脆用Select * From cyclopedia limit 90000,1呢?岂不更简洁?
这 样想就错了,试了就知道,结果是:1 row in set (8.88) sec,怎么样,够吓人的吧。Select * 最好不要随便用,要本着用什么,选什么的原则, Select的字段越多,字段数据量越大,速度就越慢. 另外,第2方案中,
ID
是
主键,所以不会去做全表扫描,而是直接返回
limit offset+length条记录。
第1种方案同样可用于MS-SQL,而且可能是最好的.因为靠主键ID来定位起始段总是最快的.
Select Top 100 * From cyclopedia Where ID>=(
Select Top 90001 Max(ID) From (
Select ID From cyclopedia Order By ID
) As tmp
)
但不管是实现方式是存贮过程还是直接代码中,瓶颈始终在于MS-SQL的TOP总是要返回前N个记录,这种情况在数据量不大时感受不深,但如果成百上千万,效率肯定会低下的.相比之下MySQL的limit就有优势的多,执行:
Select ID From cyclopedia limit 90000
Select ID From cyclopedia limit 90000,1
的结果分别是:
90000 rows in set (0.36) sec
1 row in set (0.06) sec
而MS-SQL只能用Select Top 90000 ID From cyclopedia 执行时间是390ms,执行同样的操作时间也不及MySQL的360ms.
以下转自:http://www.daydaydata.com/help/sql/advance/limit.html
LIMIT子句
LIMIT 子句用于规定要返回的记录的数目。
对于拥有成千上万条记录的大型表来说,LIMIT 子句是非常有用的。
语法
SELECT
列名称FROM
表名称LIMIT
开始位置, 行数
注意:开始位置可以省略,默认是0位置。
原始的表 (用在例子中的):
日交易表:
股票代码 | 交易日期 | 开盘价 | 收盘价 | 最高价 | 最低价 | 成交总量 | 成交总金额 |
---|---|---|---|---|---|---|---|
000625 | 2012-06-13 | 5.55 | 5.56 | 5.63 | 5.49 | 15,228,477 | 85,019,920 |
000625 | 2012-06-12 | 5.55 | 5.53 | 5.59 | 5.46 | 16,916,386 | 93,342,080 |
600030 | 2012-06-13 | 13.39 | 13.51 | 13.61 | 13.08 | 90,975,184 | 1,219,000,704 |
000002 | 2012-06-14 | 9.30 | 9.28 | 9.40 | 9.25 | 48,780,248 | 454,871,072 |
范例一
我们希望选取“日交易表”中的前两条记录
SELECT
*FROM
日交易数据LIMIT
2
结果:
股票代码 | 交易日期 | 开盘价 | 收盘价 | 最高价 | 最低价 | 成交总量 | 成交总金额 |
---|---|---|---|---|---|---|---|
000625 | 2012-06-13 | 5.55 | 5.56 | 5.63 | 5.49 | 15,228,477 | 85,019,920 |
000625 | 2012-06-12 | 5.55 | 5.53 | 5.59 | 5.46 | 16,916,386 | 93,342,080 |
范例二
我们希望选取“日交易表”中从位置2开始的2条记录
SELECT
*FROM
日交易数据LIMIT
2,2
结果:
股票代码 | 交易日期 | 开盘价 | 收盘价 | 最高价 | 最低价 | 成交总量 | 成交总金额 |
---|---|---|---|---|---|---|---|
600030 | 2012-06-13 | 13.39 | 13.51 | 13.61 | 13.08 | 90,975,184 | 1,219,000,704 |
000002 | 2012-06-14 | 9.30 | 9.28 | 9.40 | 48,780,248 | 454,871,072 |