点击 “AladdinEdu,同学们用得起的【H卡】算力平台”,注册即送-H卡级别算力,一站式沉浸式云原生集成开发环境,80G大显存多卡并行,按量弹性计费,教育用户更享超低价。
在人工智能与异构计算飞速发展的今天,我们面临着前所未有的挑战:如何将高级抽象(如Python脚本、机器学习模型)高效且灵活地映射到底层千差万别的硬件架构(如CPU、GPU、TPU、NPU)上?传统的编译器链(如LLVM)虽然成功,但其固定的中间表示(IR)层次在面对领域特定计算时常常显得力不从心。
正是在这样的背景下,MLIR(Multi-Level Intermediate Representation) 应运而生。它并非一个全新的编译器,而是一个用于构建编译器的基础设施。其核心理念是 “没有一种IR能适合所有场景” 。MLIR允许开发者构建一个包含多种抽象层次的、可扩展的中间表示生态系统。本文将带您深度探索MLIR的世界,从核心概念到完整实践,揭示其如何重塑现代编译技术。
一、 MLIR核心思想:为何需要“多层次”IR?
在深入技术细节之前,我们必须理解MLIR要解决的根本问题。
1.1 传统编译器的局限性
以经典的Clang/LLVM为例,其流程大致为:C/C++ -> Clang AST -> LLVM IR -> 目标代码。LLVM IR是一个优秀的、通用的低级IR,但它与硬件的机器指令非常接近。当我们要编译一个像TensorFlow或PyTorch这样的深度学习模型时,会遇到诸多挑战:
- 抽象鸿沟:从表示高层计算图(如
tf.MatMul)的模型直接下降到LLVM IR是一个巨大的跳跃,中间缺少了诸如循环优化、数据布局转换、特定算子融合等关键优化环节。 - 领域知识缺失:LLVM IR不理解“卷积”、“池化”等算子,无法进行跨算子的深度融合优化。
- 硬件多样性:为新的专用加速器(如TPU)编写后端,需要将高层操作直接映射到复杂的硬件指令,过程极其复杂。
1.2 MLIR的解决方案:拥抱多样性
MLIR的答案是为不同抽象层次和不同领域(Domain)创建专属的Dialect(方言)。
- 高层Dialect:靠近用户和框架,保留丰富的领域信息。例如,
Tensor类型、linalg.matmul操作。 - 中层Dialect:负责循环优化、数据局部性、并行化等。例如,
scf(结构化控制流)、affine(仿射循环)。 - 底层Dialect:靠近硬件,描述向量操作、GPU线程、ASIC指令等。例如,
vector、gpu、llvmDialect。
所有这些Dialect都共存于同一个MLIR框架下,可以相互混合、渐进式地 lowering(下降)。这种设计使得编译器优化可以在最适合的抽象层次上进行。
二、 初探MLIR:IR结构与自定义Dialect
2.1 MLIR的IR结构一览
一个MLIR模块(Module)由多个操作(Operation)组成。一个Operation是IR的基本单元,可以类比于LLVM IR中的指令,但功能强大得多。
让我们看一个简单的MLIR代码片段(使用affine Dialect):
func.func @main() -> i32 {
%c0 = arith.constant 0 : i32
%c100 = arith.constant 100 : i32
%sum = affine.for %i = 0 to 100 iter_args(%s_iter = %c0) -> i32 {
%new_sum = arith.addi %s_iter, %i : i32
affine.yield %new_sum : i32
}
return %sum : i32
}
func.func,arith.constant,affine.for,arith.addi都是操作。%c0,%c100,%i,%sum是值(Value),代表SSA值。i32是类型(Type)。- 每个操作都属于一个特定的Dialect(如
func、arith、affine)。
2.2 动手定义你的第一个Dialect:Toy语言
为了真正理解Dialect,我们跟随MLIR官方教程,定义一个简单的Toy语言的Dialect。
假设Toy语言支持浮点数和矩阵,以及一个transpose操作。我们需要在MLIR中定义对应的操作。
首先,我们使用MLIR的ODS(Operation Definition Specification)框架,通过TableGen语言来定义操作。这是一种声明式的方法,能够自动生成大量的C++代码。
// 定义Toy Dialect
def Toy_Dialect : Dialect {
let name = "toy";
let cppNamespace = "::toy";
let summary = "A dialect for the Toy language";
}
// 定义ConstantOp,用于表示常量矩阵
def Toy_ConstantOp : Toy_Op<"constant"> {
let summary = "constant operation";
let arguments = (ins F64ElementsAttr:$value);
let results = (outs F64Tensor:$output);
let assemblyFormat = [{
`(` $value `)` attr-dict `:` type($output)
}];
}
// 定义TransposeOp,用于矩阵转置
def Toy_TransposeOp : Toy_Op<"transpose"> {
let summary = "transpose operation";
let arguments = (ins F64Tensor:$input);
let results = (outs F64Tensor:$output);
// 指定自定义汇编格式
let assemblyFormat = [{
$input attr-dict `:` type($input) `->` type($output)
}];
// 声明该操作具有“纯”的副作用特性,便于优化
let hasPureTensorSemantics = 1;
}
通过MLIR的代码生成工具,上述定义会自动生成C++类Toy_ConstantOp和Toy_TransposeOp。这样,我们就可以在MLIR中生成和解析如下的Toy IR:
module {
func.func @main() -> tensor<2x3xf64> {
%0 = toy.constant dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf64>
%1 = toy.transpose(%0) : tensor<2x3xf64> -> tensor<3x2xf64>
return %1 : tensor<3x2xf64>
}
}
图解:自定义Toy Dialect的构成,包括ConstantOp和TransposeOp,以及它们如何嵌入到MLIR的Module中。
通过这个简单的例子,我们看到了MLIR强大的可扩展性。任何领域特定的计算都可以通过定义自己的Dialect和操作,在MLIR中获得一流的支持。
三、 编译器的引擎:模式匹配与重写规则
定义了Dialect,下一步就是要对IR进行转换和优化。MLIR的核心优化机制是基于模式的重写系统(Pattern Rewriting)。
3.1 声明式模式匹配(DRR)
MLIR提供了声明式的模式匹配与重写规则,让开发者只需描述“从什么模式”重写到“什么模式”,而无需关心如何遍历IR。这极大地简化了优化器的开发。
假设我们想优化一个连续的转置操作:transpose(transpose(x)) -> x。我们可以用TableGen轻松定义:
// 在Toy_TransposeOp的定义后,附加一个重写规则
def : Pat<(Toy_TransposeOp (Toy_TransposeOp $input)),
$input>;
这行代码声明了一个模式:如果遇到两个连续的toy.transpose操作,就直接用原始的输入$input替换掉它们。MLIR的驱动会在优化过程中自动应用此规则。
3.2 通用类型约束与收益
更复杂的模式可以包含类型约束。例如,我们想为toy.transpose定义一个规范化的模式:如果输入是一个常量,我们可以直接计算转置结果,将运行时的操作转变为编译时的常量折叠。
// 定义一个模式,将常量矩阵的转置折叠为新的常量
def FoldConstantTranspose : Pat<
(Toy_TransposeOp (Toy_ConstantOp $value)),
(Toy_ConstantOp (transposeConstant $value)) >;
这里,transposeConstant需要是一个在C++中实现的辅助函数,用于计算常量张量的转置。同时,我们需要通过hasCanonicalizer标记告诉MLIR,这个模式可以被规范化器(Canonicalizer)使用。
3.3 渐进式Lowering:从Toy到LLVM
优化的最终目标是将高级IR lowering 到可以被执行的底层IR(如LLVM IR)。这个过程是分阶段的。
- Shape Inference:首先,我们需要推断出Tensor的具体形状,将泛化的Tensor类型(
tensor<*xf64>)转换为具体的类型(tensor<2x3xf64>)。 - Lowering to Affine/SCF:将
toy的操作lowering到更通用的循环结构。例如,将toy.transposelowering 为一个嵌套的affine.for循环,显式地实现数据的搬运。// Lowering前 %1 = toy.transpose(%0) : tensor<2x3xf64> -> tensor<3x2xf64> // Lowering后(伪代码) %1 = affine.for %i = 0 to 3 iter_args(...) -> tensor<3x2xf64> { %2 = affine.for %j = 0 to 2 iter_args(...) -> tensor<2xf64> { %elem = tensor.extract %0[%j, %i] : tensor<2x3xf64> ... } ... } - Lowering to LLVM:最后,将
affine、memref(内存引用)等Dialect进一步lowering到llvmDialect,最终可以输出为LLVM IR,再由LLVM后端生成目标机器码。
图解:从Toy Dialect逐步Lowering到LLVM IR的完整链条,展示了不同抽象层次的Dialect如何协作。
四、 实践巅峰:结合TORCH-MLIR打通PyTorch到硬件之路
理论很美好,但实践更具说服力。TORCH-MLIR 项目是一个将PyTorch模型编译到MLIR生态系统的标杆性工程。它完美地诠释了MLIR在多层级编译中的价值。
让我们以一个简单的PyTorch模型为例,追踪其完整编译链路。
4.1 前端:从torch.nn.Module到Torch Dialect
假设我们有一个模型:
class SimpleModel(nn.Module):
def forward(self, x, y):
return torch.matmul(x, y) + x
TORCH-MLIR首先通过PyTorch的torch.export或类似的机制获取一个计算图。然后,它将这个计算图导入到MLIR中,表示为 torch Dialect 的操作。
module {
func.func @forward(%arg0: !torch.vtensor<[2,3], f32>, %arg1: !torch.vtensor<[3,4], f32>) -> !torch.vtensor<[2,4], f32> {
%0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[2,3], f32>, !torch.vtensor<[3,4], f32> -> !torch.vtensor<[2,4], f32>
%1 = torch.aten.add %0, %arg0 : !torch.vtensor<[2,4], f32>, !torch.vtensor<[2,3], f32> -> !torch.vtensor<[2,4], f32>
return %1 : !torch.vtensor<[2,4], f32>
}
}
torch Dialect保留了PyTorch的语义,包括动态形状(!torch.vtensor)。
4.2 核心转换:从Torch到Linalg与TOSA
接下来是关键的 lowering 阶段。TORCH-MLIR会将 torch Dialect 转换到更适用于硬件优化的计算图级别Dialect,主要有两个目标:
- Linalg Dialect:提供强大的结构化操作(如
linalg.matmul)和循环融合能力,特别适合CPU/GPU。 - TOSA Dialect:一个为张量操作定义的、硬件友好的标准操作集,特别适合移动端和专用加速器。
这个转换过程大量使用了我们前面提到的模式匹配与重写规则。例如,一个torch.aten.matmul操作,根据输入张量的维度和类型,可以被重写为一个linalg.matmul操作。
// 转换后(Linalg版本)
%0 = linalg.matmul ins(%arg0, %arg1 : tensor<2x3xf32>, tensor<3x4xf32>)
outs(%buffer : tensor<2x4xf32>) -> tensor<2x4xf32>
4.3 后端冲刺:面向TPU的代码生成
假设我们的目标是Google的TPU。MLIR拥有一个强大的后端生态系统。
- 从Linalg/TOSA到Vector:首先,将
linalg操作分解为底层的vector(向量)操作。TPU是典型的SIMD架构,擅长处理向量化计算。 - 目标特定Lowering:通过
vectorDialect,我们可以进行进一步的优化,如循环展开、软件流水线,并最终lowering到TPU支持的特定指令集。MLIR社区有像xla、mhlo等与TPU相关的Dialect,它们充当了高层计算与TPU运行时之间的桥梁。 - 最终输出:经过一系列 lowering,IR最终被转换为TPU运行时可以接受的格式(如StableHLO),或者生成直接调用TPU驱动API的代码。
图解:通过TORCH-MLIR,一个PyTorch模型经过Torch -> Linalg/TOSA -> Vector -> TPU Dialect的转换,最终在TPU硬件上执行。
五、 总结与展望
通过从Toy语言到TPU硬件的旅程,我们深度解析了MLIR的核心价值:
- 可扩展性与模块化:通过Dialect,MLIR为不同的抽象层次和硬件后端提供了统一的、可互操作的接口。
- 强大的优化能力:基于声明式的模式重写系统,使得编写编译器优化变得简单而高效。
- 完整的端到端链路:MLIR不是孤立的工具,它旨在构建从最前沿的AI研究到最底层硬件代码的完整技术栈,TORCH-MLIR就是这一理念的成功实践。
MLIR正在成为下一代编译技术的事实标准,其影响力远超AI领域,正在向数据库、科学计算、编程语言等更广泛的领域扩展。掌握MLIR,就意味着掌握了构建未来计算基础设施的关键技术。希望本文能为您打开这扇通往编译器深处的大门,助您在异构计算的时代浪潮中乘风破浪。
2983

被折叠的 条评论
为什么被折叠?



