对于算法题,还是要及时地进行总结和收获,不然,对于核心的知识掌握过几天就忘记了,相当于之前付出的努力都打了水漂,多浪费啊。
LRU缓存机制
- LRU 缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:
LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?
这个算是复习一下双向链表的写法了。
发现用idea 写代码还真是很酸爽啊,LUR最近最少使用,底层的实现原理原来是用双向链表实现的。
几个方法,比如删除最久没使用的元素,先找到要删除的元素然后删除。
题目要求要在O(1)时间取出元素,那肯定得有一个指针指向那个元素,或者通过哈希来指向元素。
分析问题的时候可以发散一下思维想象以前遇到过的数据结构。
import java.util.*;
public class LRU {
//先定义节点类,节点包含key 和 value。
//哈希表用于建立key 到节点之间的映射关系。
class DLinkNode{
int key;
int value;
DLinkNode prev;
DLinkNode next;
DLinkNode(){}
DLinkNode(int _key,int _value){
this.key=_key;
this.value=_value;
}
}
private int curSize;//当前容量
private int capacity;
DLinkNode head,tail;
private Map<Integer,DLinkNode> cache;
public LRU(int capacity) {
this.curSize = 0;
this.capacity = capacity;
this.head = new DLinkNode();
this.tail = new DLinkNode();
head.next = tail;
tail.prev = head;
this.cache = new HashMap<>();
}
public int get(int key) {
DLinkNode node = cache.get(key);
if(node == null){
return -1;
}
moveToHead(node);
return node.value;
}
public void put(int key, int value) {
DLinkNode node = cache.get(key);
if(node == null){
node = new DLinkNode(key,value);
cache.put(key,node);
//将它加入到头结点。
insertHead(node);
++curSize;
if(curSize>capacity){
DLinkNode lastNode =deleteTail();
cache.remove(lastNode.key);
curSize--;
}
}
node.value = value;//已经存在了,就修改它的值。
moveToHead(node);
}
public void insertHead(DLinkNode node) {
node.prev = head;
head.next.prev = node;
node.next = head.next;
head.next = node;
}
public void deleteNode(DLinkNode node){
//传入要删除的节点
node.next.prev = node.prev;
node.prev.next = node.next;
}
public void moveToHead(DLinkNode node){
deleteNode(node);
insertHead(node);
}
public DLinkNode deleteTail( ){
DLinkNode node = tail.prev;
deleteNode(node);
return node;
}
}