字符串匹配优化(KMP)(写+转载)

我的理解:总的来说,由于传统的暴力求字符串匹配复杂度为0(n*m),效率太低。然后出现了KMP算法,效率 0(m+n).其算法的核心在于求解最长前缀后得到要跳过的距离(即不需要去匹配的串直接跳过)


题目:

Description

The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book: 

Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais… 

Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces. 

So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap. 

 

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format: 

One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W). 
One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000. 
 

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T. 

 

Sample Input

    
    
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
 

Sample Output

    
    
1 3 0

题目描述:求解字符串W在T中出现的次数

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
using namespace std;
typedef pair<int, int> P;
#define LOCAL
#define INF 0x3f3f3f3f
#define PI acos(-1)
#define MAX_N 10000

char target[1000005];
char Pattern[10005];
int PrefixFunc[10005];//前缀数组

//求模式串Pattern的前缀函数,位移为 dex - PrefixFunc
void next()
{
    int PatLen = strlen(Pattern);
    int LOLP = 0;//最长前缀长度初始化为0
    PrefixFunc[1] = 0;//匹配一个就失配的情况

    for(int NOCM = 2; NOCM < PatLen + 1; NOCM++)//NOCM代表匹配的字符数目(1——12)如果模式串为12个字符
    {
        while(LOLP > 0 && (Pattern[LOLP] != Pattern[NOCM - 1]))
            LOLP = PrefixFunc[LOLP];
        if(Pattern[LOLP] == Pattern[NOCM-1])//更新最长前缀的长度
            LOLP++;
        PrefixFunc[NOCM] = LOLP;
    }
}

void KMP()
{
    int ans = 0;
    int tar_length = strlen(target);
    int pat_length = strlen(Pattern);

    next();

    int NOCM = 0;//匹配字符的数量
    for(int i = 0; i < tar_length; i++)
    {
        while(NOCM > 0 && Pattern[NOCM] != target[i])
            NOCM = PrefixFunc[NOCM];
        if(Pattern[NOCM] == target[i])
            NOCM++;
        if(NOCM == pat_length)
        {
            ans++;
//            cout << "子串位置" << i - pat_length + 1 << endl;
            NOCM = PrefixFunc[NOCM];
        }
    }
    printf("%d\n", ans);
}


int main()
{
	#ifdef LOCAL
		freopen("b:\\data.in.txt", "r", stdin);
	#endif

    int T;
    scanf("%d", &T);
    while(T--)
    {
        memset(PrefixFunc, 0, sizeof(PrefixFunc));//清空前缀数组
        scanf("%s%s", Pattern, target);
        KMP();
    }

    return 0;
}






相信很多人(包括自己)初识KMP算法的时候始终是丈二和尚摸不着头脑,要么完全不知所云,要么看不懂书上的解释,要么自己觉得好像心里了解KMP算法的意思,却说不出个究竟,所谓知其然不知其所以然是也。

     经过七八个小时地仔细研究,终于感觉自己能说出其所以然了,又觉得数据结构书上写得过于简洁,不易于初学者接受,于是决定把自己的理解拿出来与大家分享,希望能抛砖引玉,这便是Bill写这篇文章想要得到的最好结果了

-----------------------------------谨以此文,献给刚接触KMP算法的朋友,定有不足之处,望大家指正----------------------------------------

 

 

 

【KMP算法简介】

 

         KMP算法是一种改进后的字符串匹配算法,由D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。通过一个辅助函数实现跳过扫描不必要的目标串字符,以达到优化效果。

 

 

 

【传统字符串匹配算法的缺憾】

 

         Bill认为,对于一种优化的算法,既要知道优化的细节,也更应该了解它的前身(至于KMP是否基于传统算法,我不清楚,这里只作语境上的前身),了解是什么原因导致了人们要去优化它,因此加入了这一段:

请看以下传统字符串匹配的代码:


void NativeStrMatching( ElemType Target[], ElemType Pattern[] )  
 
    register int TarLen = 0;    // Length of Target  
    register int PatLen = 0;    // Length of Pattern  
 
    // Compute the length of Pattern  
    while( '\0' != Pattern[PatLen] )  
        PatLen++;  
 
    while( '\0' != Target[TarLen] )  
    {  
        int TmpTarLen = TarLen;  
        for(int i=0; i<PatLen; i++)  
        {  
            if( Target[TmpTarLen++] != Pattern[i] )  
                break;  
            if( i == PatLen-1 )  
                cout<<"Native String Matching,pattern occurs with shift "<<TarLen<<endl;  
        }  
        TarLen++;  
    }  

【代码思想】

     传统匹配思想是,从目标串Target的第一个字符开始扫描,逐一与模式串的对应字符进行匹配,若该组字符匹配,则检测下一组字符,如遇失配,则退回到Target的第二个字符,重复上述步骤,直到整个Pattern在Target中找到匹配,或者已经扫描完整个目标串也没能够完成匹配为止。

     这样的算法理解起来很简单,实现起来也容易,但是其中包含了过多不必要的操作,也就是在目标串中,有些字符是可以直接跳过,不必检测的。

 

不妨假设我们的目标串

Target =  "a b c d e a b c d e a b c d f"

 

需要匹配的模式串

Pattern = "c d f";

 

那么当匹配到如下情况时

        
【KMP算法详解——适合初学KMP算法的朋友】

 

由于 'e' != 'f' ,因此失配,那么下次匹配起始位置就是目标串的'd'字符

      

【KMP算法详解——适合初学KMP算法的朋友】

我们发现这里照样失配,直到运行到下述情况


【KMP算法详解——适合初学KMP算法的朋友】

也就是说,中间的四个字符 d e a b 完全没有必要检测,直接跳转到下一个'c'开始的地方进行检测   

     

     由此可见传统算法虽然简单易行,但其中包含了过多的不必要操作,并不能很好地达到实际工作中需要的效率,因此个人认为此方法适合为初识字符串匹配做一个铺垫作用,有抛砖引玉之意。

     说其抛砖引玉并不为过,对KMP算法的理解便可以基于传统模式串匹配算法进行思考。

 

 

 

 

【KMP算法的引入】

 

     既然知道了传统算法的不足之处,就要对症下药,优化这个冗余的检测算法。

     KMP算法就能很好地解决这个冗余问题。

     其主要思想为:

          在失配后,并不简单地从目标串下一个字符开始新一轮的检测,而是依据在检测之前得到的有用信息(稍后详述),直接跳过不必要的检测,从而达到一个较高的检测效率。

 

     如我们的

 

            

          a b c d e a b c d e a b c d f

              | |     | | :

              c d f     c d f

         第一次失配   新的检测

 

        当第一次失配后,并不从红色标记字符'd'开始检测,而是通过一些有用信息,直接跳过后几个肯定不可能匹配的冗余字符,而直接让模式串Pattern从目标串的红色标记字符'c'开始新一轮的检测,从而达到了减少循环次数的效果

 

 

 

【KMP算法思想详述与实现】

 

        前面提到,KMP算法通过一个“有用信息”可以知道目标串中下一个字符是否有必要被检测,这个“有用信息”就是用所谓的“前缀函数(一般数据结构书中的next函数)”来存储的。

        这个函数能够反映出现失配情况时,系统应该跳过多少无用字符(也即模式串应该向右滑动多长距离)而进行下一次检测,在上例中,这个距离为4.

        总的来讲,KMP算法有2个难点:

              一是这个前缀函数的求法。

              二是在得到前缀函数之后,怎么运用这个函数所反映的有效信息避免不必要的检测。

下面分为两个板块分别详述:

 

 

【前缀函数的引入及实现】

 

【前缀函数的引入】

 

        对于前缀函数,先要理解前缀是什么:

        简单地说,如字符串A = "abcde"        B = "ab"

        那么就称字符串B为A的前缀,记为B ⊏ A(注意那不是"包含于",Bill把它读作B前缀于A),说句题外话——"⊏"这个符号很形象嘛,封了口的这面相当于头,在头前面的就是前缀了。

        同理可知 C = "e","de" 等都是 A 的后缀,以为C ⊐ A(Bill把它读作C后缀于A)

 

 

       

 

理解了什么是前、后缀,就来看看什么是前缀函数:

 

        在这里不打算引用过多的理论来说明,直接引入实例会比较容易理解,看如下示例:

  【KMP算法详解——适合初学KMP算法的朋友】

      (下述字符若带下标,则对应于图中画圈字符)

      这里模式串 P = “ababaca”,在匹配了 q=5 个字符后失配,因此,下一步就是要考虑将P向右移多少位进行新的一轮匹配检测。传统模式中,直接将P右移1位,也就是将P的首字符'a'去和目标串的'b'字符进行检测,这明显是多余的。通过我们肉眼的观察,可以很简单的知道应该将模式串P右移到下图'a3'处再开始新一轮的检测,直接跳过肯定不匹配的字符'b',那么我们“肉眼”观察的这一结果怎么把它用语言表示出来呢?

  【KMP算法详解——适合初学KMP算法的朋友】
     我们的观察过程是这样的:

          P的前缀"ab"中'a' != 'b',又因该前缀已经匹配了T中对应的"ab",因此,该前缀的字符'a1'肯定不会和T中对应的字串"ab"中的'b'匹配,也就是将P向右滑动一个位移是无意义的。

          接下来考察P的前缀"aba",发现该前缀自身的前缀'a1'与自身后缀'a2'相等,"a1 b a2" 已经匹配了T中的"a b a3",因此有 'a2' == 'a3', 故得到 'a1' == 'a3'......

          利用此思想,可推知在已经匹配 q=5 个字符的情况下,将P向右移 当且仅当 2个位移时,才能满足既没有冗余(如把'a'去和'b'比较),又不会丢失(如把'a1' 直接与 'a4' 开始比较,则丢失了与'a3'的比较)。

          而前缀函数就是这样一种函数,它决定了q与位移的一一对应关系,通过它就可以间接地求得位移s。

    

 

 

     通过对各种模式串进行上述分析(大家可以自己多写几个模式串出来自己分析理解),发现给定一个匹配字符数 q ,则唯一对应一个有效位移,如上述q=5,则对应位移为2.

     这就形成了一一对应关系,而这种唯一的关系就是由前缀函数决定的。

     这到底是怎样的一种关系呢?

     通过对诸多模式串实例的研究,我们会找到一个规律(规律的证明及引理详见《算法导论(第二版)》)。

     上例中,P 已经匹配的字符串为"ababa",那么这个字符串中,满足既是自身真后缀(即不等于自身的后缀),又是自身最长前缀的字符串为"aba",我们设这个特殊字串的长度为L,显然,L = 3. 故我们要求的 s = q - L = 5 - 3 = 2 ,满足前述分析。

    

     根据这个规律,即可得到我们要求的有效位移s,等于已经匹配的字符数 q 减去长度 L。

     即 s = q - L

     因为这个长度 L 与 q 一一对应,决定于q,因此用一函数来表达这一关系非常恰当,这就是所谓的前缀函数了。

     因为已经分析得到该关系为一一对应关系,因此用数组来表示该函数是比较恰当的,以数组的下标表示已经匹配的字符数 q,以下标对应的数据存储 L。

 

 

 

【前缀函数的实现】

    

下面就来分析怎么用代码来表达这种关系。

这里采用《算法导论(第二版)》中的思想求解。

 

不妨以 PrefixFunc[] 表示这个前缀函数,那么我们将得到以下求前缀函数的函数:

由于 0 个匹配字符数在计算中没有意义,因此PrefixFunc下标从1开始,也就是从已经有一个字符(即首字符)匹配的情况开始

 
// Compute Prefix function  
void CptPfFunc( ElemType Pattern[], int PrefixFunc[] )    
 
    // ERROR: The parameter Pattern[] is a pointer,the size of it is 4  
            
      
        register int iLen = 0;  // Length of Pattern[]  
    while( '\0' != Pattern[iLen] )  
        iLen++;  
      
    int LOLP = 0;   // Lenth of longest prefix  
    PrefixFunc[1] = 0;  
 
    for( int NOCM=2; NOCM<iLen+1; NOCM++ )   // NOCM represent the number of characters matched  
    {  
        while( LOLP>0 && (Pattern[LOLP] != Pattern[NOCM-1]) )  
            LOLP = PrefixFunc[LOLP];  
        if( Pattern[LOLP] == Pattern[NOCM-1] )  
            LOLP++;  
        PrefixFunc[NOCM] = LOLP;  
    }  
 

 

     

 对此函数的详解,不妨以一实例带入(建议大家自己手算一下,算完应该就有感觉了),易于理解:

                             

 不妨设模式串Pattern = "a  b  c  c  a  b  c  c  a  b  c  a"

      Pattern 数组编号:0  1  2  3  4  5  6  7  8  9  10 11

 

NOCM 表示 已经匹配的字符数

LOLP 表示 既是自身真后缀又是自身最长前缀的字符串长度

 

以下是计算流程:

PrefixFunc[1] = 0; //只匹配一个字符就失配时,显然该值为零

 

LOLP = 0;   NOCM = 2;   LOLP = 0;    PrefixFunc[2] = 0;

LOLP = 0;   NOCM = 3;   LOLP = 0;    PrefixFunc[3] = 0;

LOLP = 0;   NOCM = 4;   LOLP = 0;    PrefixFunc[4] = 0;

LOLP = 0;   NOCM = 5;   LOLP = 1;    PrefixFunc[5] = 1;

LOLP = 1;   NOCM = 6;   LOLP = 2;    PrefixFunc[6] = 2;

LOLP = 2;   NOCM = 7;   LOLP = 3;    PrefixFunc[7] = 3;

LOLP = 3;   NOCM = 8;   LOLP = 4;    PrefixFunc[8] = 4;

LOLP = 4;   NOCM = 9;   LOLP = 5;    PrefixFunc[9] = 5;

LOLP = 5;   NOCM = 10; LOLP = 6;    PrefixFunc[10] = 6;

LOLP = 6;   NOCM = 11; LOLP = 7;    PrefixFunc[11] = 7;

LOLP = 7;   NOCM = 12;


---------此时满足条件while( LOLP>0 && (Pattern[LOLP] != Pattern[NOCM-1]) )-------------


while语句中的执行

{

           LOLP = 7;   NOCM = 12;  LOLP = PrefixFunc[7] = 3;

           LOLP = 3;   NOCM = 12;  LOLP = PrefixFunc[3] = 0;

}


LOLP = 0;   NOCM = 12; LOLP = 1;    PrefixFunc[12] = 1;

 

最后我们的前缀函数 PrefixFunc[] = { 0,0,0,0,1,2,3,4,5,6,7,1 }

 

 

其间最精妙的要属失配时的操作

 

while( LOLP>0 && (Pattern[LOLP] != Pattern[NOCM-1]) )
              LOLP = PrefixFunc[LOLP]; 

 

其中 LOLP = PrefixFunc[LOLP];  递归调用PrefixFunc函数,直到整个P字串都再无最长前缀或者找到一个之前的满足条件的最长前缀。

 

 

 

 

 

 

 

 

 

 【应用前缀函数优化传统匹配算法——KMP算法实现】


由以上分析,不难推导KMP算法的实现


void KMPstrMatching( ElemType Target[], ElemType Pattern[] )  
 
    int PrefixFunc[MAX_SIZE];  
    register int TarLen = 0;  
    register int PatLen = 0;  
 
    // Compute the length of array Target and Pattern  
    while( '\0' != Target[TarLen] )  
        TarLen++;  
 
    while( '\0' != Pattern[PatLen] )  
        PatLen++;  
      
    // Compute the prefix function of Pattern  
    CptPfFunc( Pattern, PrefixFunc );  
 
    int NOCM = 0;   // Number of characters matched  
 
    for( int i=0; i<TarLen; i++ )  
    {  
        while( NOCM>0 && Pattern[NOCM] != Target[i] )  
            NOCM = PrefixFunc[NOCM];  
        if( Pattern[NOCM] == Target[i] )  
            NOCM++;  
        if( NOCM == PatLen )  
        {  
            cout<<"KMP String Matching,pattern occurs with shift "<<i - PatLen + 1<<endl;  
            NOCM = PrefixFunc[NOCM];  
        }  
    }  

 

 

 

 

 

 

 

 

【参考文献】

《Introduction to Algorithms》Second Edition
 
by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford 

 

 

 

转自

http://blog.csdn.net/Bill_Hoo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值