一、高斯求和
1+2+3+...+100的值是多少?
1、高斯的解答
1+2+3+...+100的计算结果和100+99+98+...+1的计算结果是一样的,那么就可以将这两串数字进行纵向相加,如下:
| 1+ | 2+ | 3+ | ... | +100 | |
| + | 100+ | 99+ | 98+ | ... | +1 |
| 101+ | 101+ | 101+ | ... | +101 | |
| 有100个101 |
101*100=10100/2=5050
2、归纳
高斯使用了以下等式

如果使用变量n,将“1到100”归纳为“1到n”,这样上面的等式变为如下形式
本文探讨了数学归纳法在证明无穷数列性质中的应用,以高斯求和为例,详细阐述了数学归纳法的原理和步骤。通过证明0以上整数的断言,展示了如何利用归纳法证明高斯断言,即0到n的整数之和的公式。文章深入浅出,帮助程序员理解并掌握这一重要的数学方法。
1+2+3+...+100的值是多少?
1+2+3+...+100的计算结果和100+99+98+...+1的计算结果是一样的,那么就可以将这两串数字进行纵向相加,如下:
| 1+ | 2+ | 3+ | ... | +100 | |
| + | 100+ | 99+ | 98+ | ... | +1 |
| 101+ | 101+ | 101+ | ... | +101 | |
| 有100个101 |
101*100=10100/2=5050
高斯使用了以下等式

如果使用变量n,将“1到100”归纳为“1到n”,这样上面的等式变为如下形式

被折叠的 条评论
为什么被折叠?