统计学习导论 学习笔记(1)

大部分统计学习问题分为以下两种类型:指导学习和无指导学习。对每一个预测变量 x i x_i xi(i=1,…,n)都有相应变量的观测 y i y_i yi。建模的目标是通过建立预测变量与响应变量的关系,精准预测响应变量或更好理解响应变量与预测变量的关系。
许多传统的统计学习方法,比如线性回归和逻辑斯谛回归,以及诸如广义可加模型、提升方法和支持向量机等比较现代的方法,都属于指导学习范畴。
对于无指导学习,只有预测变量的观测向量,这些向量没有相应的响应向量与之对应。聚类分析可以用到无指导学习。
半指导学习不提及。

我们习惯于将响应变量为定量的问题称为回归分析问题,而将具有定性响应变量的问题定义为分类问题。

  • 贝叶斯分类器
  • 贝叶斯决策边界

贝叶斯分类器将产生最低的测试错误率,称为贝叶斯错误率。

  • K最近邻方法
  • K最近邻分类器

线性回归

1.简单线性回归
假定X和Y之间存在线性关系,在数学上,又可以将这种线性关系记为:

Y ≈ \approx β 0 \beta_0 β0 + β 1 \beta_1 β1X
有时会将公式称为Y对X的回归。 β 0 \beta_0 β0 β 1 \beta_1 β1被称为模型的系数或参数。
最小二乘估计

总体回归直线
Y ≈ \approx β 0 \beta_0 β0 + β 1 \beta_1 β1X + ϵ \epsilon ϵ

2.多元线性回归
假设有p个不同的观测变量,则多元线性回归模型的形式为:
Y ≈ \approx β 0 \beta_0 β0 + β 1 X 1 \beta_1X _1 β1X1+ β 2 X 2 \beta_2X_2 β2X2+ ···+ β p X p \beta_pX_p βpXp+ ϵ \epsilon ϵ

最小二乘平面只是对真实总体回归平面的一个估计。我们可以计算置信区间以确定到 y ^ \hat{y} y^f(X)的接近程度。

数据的非线性——残差图

  • 离群点
  • 高杠杆点
  • 共线性

分类

逻辑斯谛回归
p(X) = β 0 \beta_0 β0 + β 0 \beta_0 β0X

使用逻辑斯谛函数

p(X) = e β 0 + β 1 X 1 + e β 0 + β 1 X \cfrac{e^{\beta_0+\beta_1X}}{1+e^{\beta_0+\beta_1X}} 1+eβ0+β1Xeβ0+β1X

二次判别分析

线性模型选择与正则化

  • 子集选择
  • 压缩估计
  • 降维法

1.子集选择
最优子集选择,即对p个预测变量的所有组合分别使用最小二乘回归进行拟合。
逐步选择

  1. 向前逐步选择

向前逐步选择以一个不包含任何预测变量的零模型为起点,依次往模型中添加变量,直至所有的预测变量都包含在模型中。特别之处在于,每次只将能够最大限度提升模型效果的变量加入模型中。

  1. 向后逐步选择
    以包含全部p个变量的全模型为起点,逐次迭代,每次移除一个对模型拟合结果最不利的变量。

选择最优模型

  • C p C_p Cp
  • 赤池信息量准则
  • 贝叶斯信息准则(BIC)与调整 R 2 R^2 R2

2.压缩估计方法
使用对系数进行约束或加罚的技巧对包含p个预测变量的模型进行拟合,将系数估计值往零的方向压缩。

岭回归

lasso
lasso建立的模型与岭回归建立的模型相比更易于解释。lasso得到了一个稀疏模型———只包含所有变量的一个子集的模型。

3.降维方法
将预测变量进行变换,然后用转换之后的变量拟合最小二乘模型。

  • 主成分
  • 偏最小二乘

主成分分析是一种可以从多个变量中得到低维变量的有效方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值