背包问题九讲~~完全背包

Description

已知:有一个容量为W的背包和n件物品(同一种物品可多次选取),第i件物品的重量是w[i],价值是v[i]。

问题:在不超过背包容量的情况下,最多能获得多少价值或收益?

相似问题:在恰好装满背包的情况下,最多能获得多少价值或收益?

限制:在这里,每种物品可以挑选任意件.(与01背包问题的差别所在)

这里,我们先讨论在不超过背包容量的情况下,最多能获得多少价值或收益。

Think

问题特点:这次同一类的物品可以挑选任意多件了。

子问题定义状态:

dp[i][j]表示前i种物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值。

状态转移方程:

dp[i][j] = max(dp[i-1][j - k*w[i]] + k*v[i]) (0 <= k*c[i] <=j)
dp[i-1][j - k*w[i]] + k*v[i] :表示前i-1种物品中选取若干件物品放入剩余空间为 j-k*w[i]的背包中所能得到的最大价值 加上 k件第i种物品的价值

按照这个状态转移方程来写的话,需要三层循环:(时间复杂度:O(n*W*W)

Code(一)

for(int i=1; i<=n; i++)//对1—>n个物品进行枚举
{
    for(int j=0; j<=W; j++)//对背包容量进行枚举
    {
        for(int k=0; k*w[i]<=j; k++)//对当前物品所拿的次数进行枚举
        {
            dp[i][j]=max(dp[i-1][j],dp[i-1][j-k*w[i]]+k*v[i]);
        }
    }
}
cout<< dp[n][W] <<endl;

由于这种时间复杂度太大了,所以我们可以在它的基础上进行优化。下面了解一下优化后的算法:

时间复杂度优化为O(nW)

将原始算法的DP思想转变一下。

设dp[i][j]表示出在前i种物品中选取若干件物品放入容量为j的背包所得的最大价值。

那么对于第i种物品的出现,我们对第i种物品放不放入背包进行决策。

<1>如果不放那么dp[i][j]=dp[i-1][j];

<2>如果确定放,背包中应该出现至少一件第i种物品,所以dp[i][j]种至少应该出现一件第i种物品,即dp[i][j]=dp[i][j-w[i]]+v[i]。为什么会是dp[i][j-w[i]]+v[i]?因为dp[i][j-w[i]]里面可能有第i种物品,也可能没有第i种物品。我们要确保dp[i][j]至少有一件第i件物品,所以要预留w[i]的空间来存放一件第i种物品。

状态转移方程:

dp[i][j] = max(dp[i-1][j] , dp[i][j-w[i]]+v[i])

Example

n=3(物品种类),W=7(背包容量)
i(物品编号)123
w(物品重量)342
v(物品价值)453

可以看出ans = 10(物品1拿一个,物品三拿两个)

下面进行解释模拟一下各种状态之间是如何进行的(以加深自己它的理解):

结束运行后的dp数组
行为i,列为j01234567
100044488
200045589
3003467810

代码和01背包的计算有很大的相同点。在计算中感觉加深了对这个优化后的方程理解了!

Code(二)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int n = 3;//物品个数
const int W = 7;//背包最大容量
int w[n+1] = {0,3,4,2};//物品重量
int v[n+1] = {0,4,5,3};//物品价值
int dp[n+1][W+1];
int Knapsack()
{
	memset(dp,0,sizeof(dp)); //初始化
	//递推
	for(int i=1; i<=n; i++) //枚举物品
	{
		for(int j=0; j<=W; j++) //枚举背包容量
		{
			dp[i][j] = dp[i - 1][j];
			if (j >= w[i])
			{
				dp[i][j] = max(dp[i - 1][j],dp[i][j - w[i]] + v[i]);
			}
		}
	}
//	for(int i=1; i<=n; i++)
//    {
//        for(int j=0; j<=W; j++)
//        {
//            printf("%d ",dp[i][j]);
//        }
//        printf("\n");
//    }
	return dp[n][W];
}
int main()
{
    cout<<Knapsack()<<endl;
    return 0;
}

优化空间复杂度

其实完全背包也可以像01背包那样只开一个一维数组就完成运算的!(并且两者很相似)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int n = 3;//物品个数
const int W = 7;//背包最大容量
int w[n+1] = {0,3,4,2};//物品重量
int v[n+1] = {0,4,5,3};//物品价值
int dp[W+1];

int Knapsack()
{
	memset(dp,0,sizeof(dp)); //初始化
	//递推
	for (int i = 1;i <= n;i++) //枚举物品
	{
		for (int j = w[i]; j<=W; j++) //枚举背包容量,下限为w[i],上限为W
		{
			dp[j] = max(dp[j],dp[j - w[i]] + v[i]);
		}
	}
	return dp[W];
}

int main()
{
    cout<<Knapsack()<<endl;
    return 0;
}

两者不同在于,01背包是逆序枚举,完全背包是增序枚举

增序枚举背包容量会达到什么效果:它会重复的装入某个物品,而且尽可能多的,使价值最大,当然不会不超过背包容量

逆序枚举背包容量:背包中的物品至多装一次,使价值最大,当然不会不超过背包容量。

附上一篇博客:里面有详细的例子讲增序,和逆序。Click here

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值