必修一数学典型题目讲解3

典题精讲3

关于格式:Typora的格式这里不支持,欢迎查看PDF版本

欢迎查看 精讲2精讲1

题干

  1. 已知 c = 2 c=2 c=2 a = log ⁡ 5 12 + log ⁡ 121 25 a=\log_512+\log_{121}25 a=log512+log12125 5 a + 1 2 a = 1 3 b 5^a+12^a=13^b 5a+12a=13b,比较 a a a b b b c c c 的大小。

  2. 若函数 f ( x ) f(x) f(x) 的定义域是 R \R R,若对于任意的不相等的实数 x 1 x_1 x1 x 2 x_2 x2,恒有 f ( x 1 ) − f ( x 2 ) x 1 − x 2 < 1 \frac{f(x_1)-f(x_2)}{x_1-x_2}<1 x1x2f(x1)f(x2)<1,求关于 x x x 的不等式 f ( 2 x ) > f ( x + 1 ) + x − 1 f(2x)>f(x+1)+x-1 f(2x)>f(x+1)+x1 的解集。

  3. 已知奇函数 f ( x ) f(x) f(x) 的定义域为 ( − ∞ , 0 ) ⋃ ( 0 , + ∞ ) (-\infty,0)\bigcup(0,+\infty) (,0)(0,+),满足对任意 x 1 , x 2 ∈ ( 0 , + ∞ ) x_1,x_2\in(0,+\infty) x1,x2(0,+),且 x 1 ≠ x 2 x_1\neq x_2 x1=x2,都有 x 1 f ( x 2 ) − x 2 f ( x 1 ) x 2 − x 1 < 0 \frac{x_1f(x_2)-x_2f(x_1)}{x_2-x_1}<0 x2x1x1f(x2)x2f(x1)<0,且 f ( 2 ) = 2 f(2)=2 f(2)=2,求关于 x x x 的不等式 f ( x ) > x f(x)>x f(x)>x 的解集。

  4. 已知 a > 0 a>0 a>0 a ≠ 1 a\neq1 a=1,并且关于 x x x 的方程 log ⁡ a [ x + k 2 + k + 2 x − 2 ( k + 1 ) ] = log ⁡ a ( 2 x − 1 ) \log_a[x+\frac{k^2+k+2}{x}-2(k+1)]=\log_a(\frac2x-1) loga[x+xk2+k+22(k+1)]=loga(x21) 仅有一个实数解,求 k k k 的范围。

  5. 已知 a > 0 a>0 a>0 b > 0 b>0 b>0,且 a 3 + b 3 + 2 a b = 4 a^3+b^3+2ab=4 a3+b3+2ab=4,求 a + b a+b a+b 的取值范围。

解析

利用“同构”构造函数

  1. 已知 c = 2 c=2 c=2 a = log ⁡ 5 12 + log ⁡ 121 25 a=\log_512+\log_{121}25 a=log512+log12125 5 a + 1 2 a = 1 3 b 5^a+12^a=13^b 5a+12a=13b,比较 a a a b b b c c c 的大小。

a = log ⁡ 5 12 + log ⁡ 11 5 a=\log_512+\log_{11}5 a=log512+log115,根据换底公式得 a = lg ⁡ 12 lg ⁡ 5 + lg ⁡ 5 lg ⁡ 11 a=\frac{\lg12}{\lg5}+\frac{\lg5}{\lg11} a=lg5lg12+lg11lg5,结合基本不等式:
a = lg ⁡ 12 lg ⁡ 5 + lg ⁡ 5 lg ⁡ 11 ≥ 2 lg ⁡ 12 lg ⁡ 11 a ≥ 2 log ⁡ 11 12 > 2 1 a > 2 = c ∴ 1 3 b > 5 2 + 1 2 2 = 1 3 2 ⇒ b > 2 = c a=\frac{\lg12}{\lg5}+\frac{\lg5}{\lg11}\ge2\sqrt{\frac{\lg12}{\lg11}}\\ a\ge2\sqrt{\log_{11}12}>2\sqrt{1}\\ a>2=c\\ \therefore 13^b>5^2+12^2=13^2\Rightarrow b>2=c a=lg5lg12+lg11lg52lg11lg12 a2log1112 >21 a>2=c13b>52+122=132b>2=c
​ 现在考虑 a a a b b b 的大小,构造定义域为 ( 2 , + ∞ ) (2,+\infty) (2,+) 的函数 g ( x ) = 5 x + 1 2 x − 1 3 x g(x)=5^x+12^x-13^x g(x)=5x+12x13x,可以得到:
g ( x ) = 5 2 ⋅ 5 x − 2 + 1 2 2 ⋅ 1 2 x − 2 − 1 3 2 ⋅ 1 3 x − 2 < 5 2 ⋅ 12 x − 2 + 1 2 2 ⋅ 1 2 x − 2 − 1 3 2 ⋅ 1 3 x − 2 g ( x ) < ( 5 2 + 1 2 2 ) 1 2 x − 2 − 1 3 2 ⋅ 1 3 x − 2 = 169 ( 1 2 x − 1 3 x ) < 0 g ( x ) < 0 g(x)=5^2\cdot\color{red}{5}\color{black}{}^{x-2}+12^2\cdot12^{x-2}-13^2\cdot13^{x-2}<5^2\cdot\color{red}{12}\color{black}^{x-2}+12^2\cdot12^{x-2}-13^2\cdot13^{x-2}\\ g(x)<(5^2+12^2)12^{x-2}-13^2\cdot13^{x-2}=169(12^x-13^x)<0\\ g(x)<0 g(x)=525x2+12212x213213x2<5212x2+12212x213213x2g(x)<(52+122)12x213213x2=169(12x13x)<0g(x)<0
​ 由于 a a a g ( x ) g(x) g(x) 定义域内,可得:
5 a + 1 2 a − 1 3 a < 0 5 a + 1 2 a < 1 3 a 1 3 b < 1 3 a ∴ b < a 5^a+12^a-13^a<0\\ 5^a+12^a<13^a\\ 13^b<13^a\\ \therefore b<a 5a+12a13a<05a+12a<13a13b<13ab<a
​ 综上, c < b < a c<b<a c<b<a

  1. 若函数 f ( x ) f(x) f(x) 的定义域是 R \R R,若对于任意的不相等的实数 x 1 x_1 x1 x 2 x_2 x2,恒有 f ( x 1 ) − f ( x 2 ) x 1 − x 2 < 1 \frac{f(x_1)-f(x_2)}{x_1-x_2}<1 x1x2f(x1)f(x2)<1,求关于 x x x 的不等式 f ( 2 x ) > f ( x + 1 ) + x − 1 f(2x)>f(x+1)+x-1 f(2x)>f(x+1)+x1 的解集。

:不妨令 x 1 > x 2 x_1>x_2 x1>x2,则:
f ( x 1 ) − f ( x 2 ) < x 1 − x 2 f ( x 1 ) − x 1 < f ( x 2 ) − x 2 f(x_1)-f(x_2)<x_1-x_2\\ f(x_1)-x_1<f(x_2)-x_2 f(x1)f(x2)<x1x2f(x1)x1<f(x2)x2
​ 设 g ( x ) = f ( x ) − x g(x)=f(x)-x g(x)=f(x)x 由上述不等式可得 g ( x ) g(x) g(x) 单调递减。
f ( 2 x ) − 2 x > f ( x + 1 ) + x − 1 − 2 x f ( 2 x ) − 2 x > f ( x + 1 ) − x − 1 g ( 2 x ) > g ( x + 1 ) 2 x < x + 1 x ∈ ( − ∞ , 1 ) f(2x)-2x>f(x+1)+x-1-2x\\ f(2x)-2x>f(x+1)-x-1\\ g(2x)>g(x+1)\\ 2x<x+1\\ x\in(-\infty,1) f(2x)2x>f(x+1)+x12xf(2x)2x>f(x+1)x1g(2x)>g(x+1)2x<x+1x(,1)

  1. 已知奇函数 f ( x ) f(x) f(x) 的定义域为 ( − ∞ , 0 ) ⋃ ( 0 , + ∞ ) (-\infty,0)\bigcup(0,+\infty) (,0)(0,+),满足对任意 x 1 , x 2 ∈ ( 0 , + ∞ ) x_1,x_2\in(0,+\infty) x1,x2(0,+),且 x 1 ≠ x 2 x_1\neq x_2 x1=x2,都有 x 1 f ( x 2 ) − x 2 f ( x 1 ) x 2 − x 1 < 0 \frac{x_1f(x_2)-x_2f(x_1)}{x_2-x_1}<0 x2x1x1f(x2)x2f(x1)<0,且 f ( 2 ) = 2 f(2)=2 f(2)=2,求关于 x x x 的不等式 f ( x ) > x f(x)>x f(x)>x 的解集。

:不妨令 0 < x 1 < x 2 0<x_1<x_2 0<x1<x2,则:
x 1 f ( x 2 ) − x 2 f ( x 2 ) < 0 f ( x 2 ) x 2 < f ( x 1 ) x 1 x_1f(x_2)-x_2f(x_2)<0\\ \frac{f(x_2)}{x_2}<\frac{f(x_1)}{x_1}\\ x1f(x2)x2f(x2)<0x2f(x2)<x1f(x1)
​ 设 g ( x ) = f ( x ) x g(x)=\frac{f(x)}{x} g(x)=xf(x),则 g ( x ) g(x) g(x) ( 0 , + ∞ ) (0,+\infty) (0,+) 上单调递减, g ( − x ) = f ( − x ) − x = − f ( x ) − x = g ( x ) g(-x)=\frac{f(-x)}{-x}=\frac{-f(x)}{-x}=g(x) g(x)=xf(x)=xf(x)=g(x)

​ 故 g ( x ) g(x) g(x) 是偶函数,可得在 ( − ∞ , 0 ) (-\infty,0) (,0) 上单调递增。由于 f ( 2 ) = 2 f(2)=2 f(2)=2 所以 g ( 2 ) = 1 g(2)=1 g(2)=1。现在可以解不等式了:
1 ° x > 0 f ( x ) x > 1 g ( x ) > g ( 2 ) x < 2 1 ° x < 0 f ( x ) x < 1 g ( x ) < g ( 2 ) = g ( − 2 ) x < − 2 1\degree x>0\\ \frac{f(x)}{x}>1\\ g(x)>g(2)\\ x<2\\ 1\degree x<0\\ \frac{f(x)}{x}<1\\ g(x)<g(2)=g(-2)\\ x<-2\\ x>0xf(x)>1g(x)>g(2)x<2x<0xf(x)<1g(x)<g(2)=g(2)x<2
​ 综上, x ∈ ( − ∞ , 2 ) ⋃ ( 0 , 2 ) x\in(-\infty,2)\bigcup(0,2) x(,2)(0,2)

勿忘定义域

  1. 已知 a > 0 a>0 a>0 a ≠ 1 a\neq1 a=1,并且关于 x x x 的方程 log ⁡ a [ x + k 2 + k + 2 x − 2 ( k + 1 ) ] = log ⁡ a ( 2 x − 1 ) \log_a[x+\frac{k^2+k+2}{x}-2(k+1)]=\log_a(\frac2x-1) loga[x+xk2+k+22(k+1)]=loga(x21) 仅有一个实数解,求 k k k 的范围。


x + k 2 + k + 2 x − 2 ( k + 1 ) = 2 x − 1 ( x − k − 1 ) ( x − k ) = 0 x 1 = k + 1 x 2 = k x+\frac{k^2+k+2}{x}-2(k+1)=\frac{2}{x}-1\\ (x-k-1)(x-k)=0\\ x_1=k+1\\ x_2=k x+xk2+k+22(k+1)=x21(xk1)(xk)=0x1=k+1x2=k
​ 由 2 x − 1 > 0 \frac{2}{x}-1>0 x21>0 x ∈ ( 0 , 2 ) x\in(0,2) x(0,2),这两个解答只有一个满足。
1 ° x = k 1\degree x=k x=k

{ 0 < k < 2 k + 1 ≥ 2 k + k 2 + k + 2 k − 2 ( k + 1 ) > 0 \begin{cases}0<k<2\\k+1\ge2\\k+\frac{k^2+k+2}{k}-2(k+1)>0\end{cases} 0<k<2k+12k+kk2+k+22(k+1)>0

​ 无解。

2 ° x = k 2\degree x=k x=k

{ 0 < k + 1 < 2 k ≤ 0 k + 1 + k 2 + k + 2 k + 1 − 2 ( k + 1 ) > 0 \begin{cases}0<k+1<2\\k\le0\\k+1+\frac{k^2+k+2}{k+1}-2(k+1)>0\end{cases} 0<k+1<2k0k+1+k+1k2+k+22(k+1)>0

​ 解得 k ∈ ( − 1 , 0 ] k\in(-1,0] k(1,0]

​ 综上, k ∈ ( − 1 , 0 ] k\in(-1,0] k(1,0]

基本不等式

  1. 已知 a > 0 a>0 a>0 b > 0 b>0 b>0,且 a 3 + b 3 + 2 a b = 4 a^3+b^3+2ab=4 a3+b3+2ab=4,求 a + b a+b a+b 的取值范围。

:出现 a b ab ab a + b a+b a+b,尝试用基本不等式将它们联系起来。
a 3 + b 3 + 2 a b = 4 ( a + b ) ( a 2 + b 2 − a b ) + 2 a b = 4 ( a + b ) [ ( a + b ) 2 − 3 a b ] + 2 a b = 4 a^3+b^3+2ab=4\\ (a+b)(a^2+b^2-ab)+2ab=4\\ (a+b)[(a+b)^2-3ab]+2ab=4\\ a3+b3+2ab=4(a+b)(a2+b2ab)+2ab=4(a+b)[(a+b)23ab]+2ab=4
​ 令 t = a + b t=a+b t=a+b 可得
t ( t 2 − 3 a b ) + 2 a b = 4 ∴ a b = 4 − t 3 2 − 3 t ∵ a + b ≥ 2 a b ∴ a b ≤ ( a + b ) 2 4 ∴ 4 − t 3 2 − 3 t ≤ ( a + b ) 2 4 t(t^2-3ab)+2ab=4\\ \therefore ab=\frac{4-t^3}{2-3t}\\ \because a+b\ge2\sqrt{ab}\\ \therefore ab\le \frac{(a+b)^2}{4}\\ \therefore \frac{4-t^3}{2-3t}\le \frac{(a+b)^2}{4} t(t23ab)+2ab=4ab=23t4t3a+b2ab ab4(a+b)223t4t34(a+b)2
​ 解这个不等式得到 t ∈ ( 4 3 , 2 ] t\in(\sqrt[3]4,2] t(34 ,2] 也即 a + b a+b a+b 的范围。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值