典题精讲3
关于格式:Typora的格式这里不支持,欢迎查看PDF版本。
题干
-
已知 c = 2 c=2 c=2, a = log 5 12 + log 121 25 a=\log_512+\log_{121}25 a=log512+log12125, 5 a + 1 2 a = 1 3 b 5^a+12^a=13^b 5a+12a=13b,比较 a a a, b b b, c c c 的大小。
-
若函数 f ( x ) f(x) f(x) 的定义域是 R \R R,若对于任意的不相等的实数 x 1 x_1 x1 和 x 2 x_2 x2,恒有 f ( x 1 ) − f ( x 2 ) x 1 − x 2 < 1 \frac{f(x_1)-f(x_2)}{x_1-x_2}<1 x1−x2f(x1)−f(x2)<1,求关于 x x x 的不等式 f ( 2 x ) > f ( x + 1 ) + x − 1 f(2x)>f(x+1)+x-1 f(2x)>f(x+1)+x−1 的解集。
-
已知奇函数 f ( x ) f(x) f(x) 的定义域为 ( − ∞ , 0 ) ⋃ ( 0 , + ∞ ) (-\infty,0)\bigcup(0,+\infty) (−∞,0)⋃(0,+∞),满足对任意 x 1 , x 2 ∈ ( 0 , + ∞ ) x_1,x_2\in(0,+\infty) x1,x2∈(0,+∞),且 x 1 ≠ x 2 x_1\neq x_2 x1=x2,都有 x 1 f ( x 2 ) − x 2 f ( x 1 ) x 2 − x 1 < 0 \frac{x_1f(x_2)-x_2f(x_1)}{x_2-x_1}<0 x2−x1x1f(x2)−x2f(x1)<0,且 f ( 2 ) = 2 f(2)=2 f(2)=2,求关于 x x x 的不等式 f ( x ) > x f(x)>x f(x)>x 的解集。
-
已知 a > 0 a>0 a>0 且 a ≠ 1 a\neq1 a=1,并且关于 x x x 的方程 log a [ x + k 2 + k + 2 x − 2 ( k + 1 ) ] = log a ( 2 x − 1 ) \log_a[x+\frac{k^2+k+2}{x}-2(k+1)]=\log_a(\frac2x-1) loga[x+xk2+k+2−2(k+1)]=loga(x2−1) 仅有一个实数解,求 k k k 的范围。
-
已知 a > 0 a>0 a>0, b > 0 b>0 b>0,且 a 3 + b 3 + 2 a b = 4 a^3+b^3+2ab=4 a3+b3+2ab=4,求 a + b a+b a+b 的取值范围。
解析
利用“同构”构造函数
- 已知 c = 2 c=2 c=2, a = log 5 12 + log 121 25 a=\log_512+\log_{121}25 a=log512+log12125, 5 a + 1 2 a = 1 3 b 5^a+12^a=13^b 5a+12a=13b,比较 a a a, b b b, c c c 的大小。
解:
a
=
log
5
12
+
log
11
5
a=\log_512+\log_{11}5
a=log512+log115,根据换底公式得
a
=
lg
12
lg
5
+
lg
5
lg
11
a=\frac{\lg12}{\lg5}+\frac{\lg5}{\lg11}
a=lg5lg12+lg11lg5,结合基本不等式:
a
=
lg
12
lg
5
+
lg
5
lg
11
≥
2
lg
12
lg
11
a
≥
2
log
11
12
>
2
1
a
>
2
=
c
∴
1
3
b
>
5
2
+
1
2
2
=
1
3
2
⇒
b
>
2
=
c
a=\frac{\lg12}{\lg5}+\frac{\lg5}{\lg11}\ge2\sqrt{\frac{\lg12}{\lg11}}\\ a\ge2\sqrt{\log_{11}12}>2\sqrt{1}\\ a>2=c\\ \therefore 13^b>5^2+12^2=13^2\Rightarrow b>2=c
a=lg5lg12+lg11lg5≥2lg11lg12a≥2log1112>21a>2=c∴13b>52+122=132⇒b>2=c
现在考虑
a
a
a 和
b
b
b 的大小,构造定义域为
(
2
,
+
∞
)
(2,+\infty)
(2,+∞) 的函数
g
(
x
)
=
5
x
+
1
2
x
−
1
3
x
g(x)=5^x+12^x-13^x
g(x)=5x+12x−13x,可以得到:
g
(
x
)
=
5
2
⋅
5
x
−
2
+
1
2
2
⋅
1
2
x
−
2
−
1
3
2
⋅
1
3
x
−
2
<
5
2
⋅
12
x
−
2
+
1
2
2
⋅
1
2
x
−
2
−
1
3
2
⋅
1
3
x
−
2
g
(
x
)
<
(
5
2
+
1
2
2
)
1
2
x
−
2
−
1
3
2
⋅
1
3
x
−
2
=
169
(
1
2
x
−
1
3
x
)
<
0
g
(
x
)
<
0
g(x)=5^2\cdot\color{red}{5}\color{black}{}^{x-2}+12^2\cdot12^{x-2}-13^2\cdot13^{x-2}<5^2\cdot\color{red}{12}\color{black}^{x-2}+12^2\cdot12^{x-2}-13^2\cdot13^{x-2}\\ g(x)<(5^2+12^2)12^{x-2}-13^2\cdot13^{x-2}=169(12^x-13^x)<0\\ g(x)<0
g(x)=52⋅5x−2+122⋅12x−2−132⋅13x−2<52⋅12x−2+122⋅12x−2−132⋅13x−2g(x)<(52+122)12x−2−132⋅13x−2=169(12x−13x)<0g(x)<0
由于
a
a
a 在
g
(
x
)
g(x)
g(x) 定义域内,可得:
5
a
+
1
2
a
−
1
3
a
<
0
5
a
+
1
2
a
<
1
3
a
1
3
b
<
1
3
a
∴
b
<
a
5^a+12^a-13^a<0\\ 5^a+12^a<13^a\\ 13^b<13^a\\ \therefore b<a
5a+12a−13a<05a+12a<13a13b<13a∴b<a
综上,
c
<
b
<
a
c<b<a
c<b<a。
- 若函数 f ( x ) f(x) f(x) 的定义域是 R \R R,若对于任意的不相等的实数 x 1 x_1 x1 和 x 2 x_2 x2,恒有 f ( x 1 ) − f ( x 2 ) x 1 − x 2 < 1 \frac{f(x_1)-f(x_2)}{x_1-x_2}<1 x1−x2f(x1)−f(x2)<1,求关于 x x x 的不等式 f ( 2 x ) > f ( x + 1 ) + x − 1 f(2x)>f(x+1)+x-1 f(2x)>f(x+1)+x−1 的解集。
解:不妨令
x
1
>
x
2
x_1>x_2
x1>x2,则:
f
(
x
1
)
−
f
(
x
2
)
<
x
1
−
x
2
f
(
x
1
)
−
x
1
<
f
(
x
2
)
−
x
2
f(x_1)-f(x_2)<x_1-x_2\\ f(x_1)-x_1<f(x_2)-x_2
f(x1)−f(x2)<x1−x2f(x1)−x1<f(x2)−x2
设
g
(
x
)
=
f
(
x
)
−
x
g(x)=f(x)-x
g(x)=f(x)−x 由上述不等式可得
g
(
x
)
g(x)
g(x) 单调递减。
f
(
2
x
)
−
2
x
>
f
(
x
+
1
)
+
x
−
1
−
2
x
f
(
2
x
)
−
2
x
>
f
(
x
+
1
)
−
x
−
1
g
(
2
x
)
>
g
(
x
+
1
)
2
x
<
x
+
1
x
∈
(
−
∞
,
1
)
f(2x)-2x>f(x+1)+x-1-2x\\ f(2x)-2x>f(x+1)-x-1\\ g(2x)>g(x+1)\\ 2x<x+1\\ x\in(-\infty,1)
f(2x)−2x>f(x+1)+x−1−2xf(2x)−2x>f(x+1)−x−1g(2x)>g(x+1)2x<x+1x∈(−∞,1)
- 已知奇函数 f ( x ) f(x) f(x) 的定义域为 ( − ∞ , 0 ) ⋃ ( 0 , + ∞ ) (-\infty,0)\bigcup(0,+\infty) (−∞,0)⋃(0,+∞),满足对任意 x 1 , x 2 ∈ ( 0 , + ∞ ) x_1,x_2\in(0,+\infty) x1,x2∈(0,+∞),且 x 1 ≠ x 2 x_1\neq x_2 x1=x2,都有 x 1 f ( x 2 ) − x 2 f ( x 1 ) x 2 − x 1 < 0 \frac{x_1f(x_2)-x_2f(x_1)}{x_2-x_1}<0 x2−x1x1f(x2)−x2f(x1)<0,且 f ( 2 ) = 2 f(2)=2 f(2)=2,求关于 x x x 的不等式 f ( x ) > x f(x)>x f(x)>x 的解集。
解:不妨令
0
<
x
1
<
x
2
0<x_1<x_2
0<x1<x2,则:
x
1
f
(
x
2
)
−
x
2
f
(
x
2
)
<
0
f
(
x
2
)
x
2
<
f
(
x
1
)
x
1
x_1f(x_2)-x_2f(x_2)<0\\ \frac{f(x_2)}{x_2}<\frac{f(x_1)}{x_1}\\
x1f(x2)−x2f(x2)<0x2f(x2)<x1f(x1)
设
g
(
x
)
=
f
(
x
)
x
g(x)=\frac{f(x)}{x}
g(x)=xf(x),则
g
(
x
)
g(x)
g(x) 在
(
0
,
+
∞
)
(0,+\infty)
(0,+∞) 上单调递减,
g
(
−
x
)
=
f
(
−
x
)
−
x
=
−
f
(
x
)
−
x
=
g
(
x
)
g(-x)=\frac{f(-x)}{-x}=\frac{-f(x)}{-x}=g(x)
g(−x)=−xf(−x)=−x−f(x)=g(x)
故
g
(
x
)
g(x)
g(x) 是偶函数,可得在
(
−
∞
,
0
)
(-\infty,0)
(−∞,0) 上单调递增。由于
f
(
2
)
=
2
f(2)=2
f(2)=2 所以
g
(
2
)
=
1
g(2)=1
g(2)=1。现在可以解不等式了:
1
°
x
>
0
f
(
x
)
x
>
1
g
(
x
)
>
g
(
2
)
x
<
2
1
°
x
<
0
f
(
x
)
x
<
1
g
(
x
)
<
g
(
2
)
=
g
(
−
2
)
x
<
−
2
1\degree x>0\\ \frac{f(x)}{x}>1\\ g(x)>g(2)\\ x<2\\ 1\degree x<0\\ \frac{f(x)}{x}<1\\ g(x)<g(2)=g(-2)\\ x<-2\\
1°x>0xf(x)>1g(x)>g(2)x<21°x<0xf(x)<1g(x)<g(2)=g(−2)x<−2
综上,
x
∈
(
−
∞
,
2
)
⋃
(
0
,
2
)
x\in(-\infty,2)\bigcup(0,2)
x∈(−∞,2)⋃(0,2)。
勿忘定义域
- 已知 a > 0 a>0 a>0 且 a ≠ 1 a\neq1 a=1,并且关于 x x x 的方程 log a [ x + k 2 + k + 2 x − 2 ( k + 1 ) ] = log a ( 2 x − 1 ) \log_a[x+\frac{k^2+k+2}{x}-2(k+1)]=\log_a(\frac2x-1) loga[x+xk2+k+2−2(k+1)]=loga(x2−1) 仅有一个实数解,求 k k k 的范围。
解:
x
+
k
2
+
k
+
2
x
−
2
(
k
+
1
)
=
2
x
−
1
(
x
−
k
−
1
)
(
x
−
k
)
=
0
x
1
=
k
+
1
x
2
=
k
x+\frac{k^2+k+2}{x}-2(k+1)=\frac{2}{x}-1\\ (x-k-1)(x-k)=0\\ x_1=k+1\\ x_2=k
x+xk2+k+2−2(k+1)=x2−1(x−k−1)(x−k)=0x1=k+1x2=k
由
2
x
−
1
>
0
\frac{2}{x}-1>0
x2−1>0 得
x
∈
(
0
,
2
)
x\in(0,2)
x∈(0,2),这两个解答只有一个满足。
1
°
x
=
k
1\degree x=k
1°x=k
{ 0 < k < 2 k + 1 ≥ 2 k + k 2 + k + 2 k − 2 ( k + 1 ) > 0 \begin{cases}0<k<2\\k+1\ge2\\k+\frac{k^2+k+2}{k}-2(k+1)>0\end{cases} ⎩ ⎨ ⎧0<k<2k+1≥2k+kk2+k+2−2(k+1)>0
无解。
2 ° x = k 2\degree x=k 2°x=k
{ 0 < k + 1 < 2 k ≤ 0 k + 1 + k 2 + k + 2 k + 1 − 2 ( k + 1 ) > 0 \begin{cases}0<k+1<2\\k\le0\\k+1+\frac{k^2+k+2}{k+1}-2(k+1)>0\end{cases} ⎩ ⎨ ⎧0<k+1<2k≤0k+1+k+1k2+k+2−2(k+1)>0
解得 k ∈ ( − 1 , 0 ] k\in(-1,0] k∈(−1,0]
综上, k ∈ ( − 1 , 0 ] k\in(-1,0] k∈(−1,0]。
基本不等式
- 已知 a > 0 a>0 a>0, b > 0 b>0 b>0,且 a 3 + b 3 + 2 a b = 4 a^3+b^3+2ab=4 a3+b3+2ab=4,求 a + b a+b a+b 的取值范围。
解:出现
a
b
ab
ab 和
a
+
b
a+b
a+b,尝试用基本不等式将它们联系起来。
a
3
+
b
3
+
2
a
b
=
4
(
a
+
b
)
(
a
2
+
b
2
−
a
b
)
+
2
a
b
=
4
(
a
+
b
)
[
(
a
+
b
)
2
−
3
a
b
]
+
2
a
b
=
4
a^3+b^3+2ab=4\\ (a+b)(a^2+b^2-ab)+2ab=4\\ (a+b)[(a+b)^2-3ab]+2ab=4\\
a3+b3+2ab=4(a+b)(a2+b2−ab)+2ab=4(a+b)[(a+b)2−3ab]+2ab=4
令
t
=
a
+
b
t=a+b
t=a+b 可得
t
(
t
2
−
3
a
b
)
+
2
a
b
=
4
∴
a
b
=
4
−
t
3
2
−
3
t
∵
a
+
b
≥
2
a
b
∴
a
b
≤
(
a
+
b
)
2
4
∴
4
−
t
3
2
−
3
t
≤
(
a
+
b
)
2
4
t(t^2-3ab)+2ab=4\\ \therefore ab=\frac{4-t^3}{2-3t}\\ \because a+b\ge2\sqrt{ab}\\ \therefore ab\le \frac{(a+b)^2}{4}\\ \therefore \frac{4-t^3}{2-3t}\le \frac{(a+b)^2}{4}
t(t2−3ab)+2ab=4∴ab=2−3t4−t3∵a+b≥2ab∴ab≤4(a+b)2∴2−3t4−t3≤4(a+b)2
解这个不等式得到
t
∈
(
4
3
,
2
]
t\in(\sqrt[3]4,2]
t∈(34,2] 也即
a
+
b
a+b
a+b 的范围。