力扣185
题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。
思路分析(https://leetcode.cn/problems/nge-tou-zi-de-dian-shu-lcof/solutions/637778/jian-zhi-offer-60-n-ge-tou-zi-de-dian-sh-z36d/)
Python
class Solution:
def statisticsProbability(self, num: int) -> List[float]:
res = [0] * (num * 5 + 1) # 和范围[num, 6num], 共计5num+1种可能
dp = [[0] * (num*6 + 1) for _ in range(num+1)] # dp[i][j]表示i个骰子,和为j概率
for i in range(1, 7):
dp[1][i] = 1/6
for i in range(2, num+1):
for j in range(i, i*6 + 1):
for k in range(1, 7):
if j > k:
dp[i][j] += dp[i-1][j-k] * (1/6)
for i in range(0, num*5 + 1):
res[i] = dp[num][i+num] # 和范围[num, 6num]
return res
Java
class Solution {
public double[] statisticsProbability(int num) {
double[] res = new double[num * 5 + 1]; // 和的范围[n, 6n], 共计5n+1个
double[][] dp = new double[num + 1][num * 6 + 1]; // dp[i][j]表示i个骰子,和为j的概率
for (int i = 1; i <= 6; ++i) {
dp[1][i] = 1.0/6.0;
}
for (int i = 2; i <= num; ++i) { // 骰子数量
for (int j = i; j <=i * 6; ++j) { // i个骰子的和
for (int k = 1; k <= 6; ++k) { // 递推关系
if (j > k) {
dp[i][j] += dp[i - 1][j - k] / 6.0;
}
}
}
}
for (int i = 0; i < num * 5 + 1; ++i) {
res[i] = dp[num][i + num];
}
return res;
}
}
// 写法1
class Solution {
public double[] statisticsProbability(int num) {
double[] dp = new double[6];
Arrays.fill(dp, 1.0 / 6.0);
for (int i = 2; i <= num; i++) {
double[] tmp = new double[5 * i + 1];
for (int j = 0; j < dp.length; j++) {
for (int k = 0; k < 6; k++) {
tmp[j + k] += dp[j] / 6.0;
}
}
dp = tmp;
}
return dp;
}
}
// 写法2
class Solution {
public double[] statisticsProbability(int num) {
double[] res = new double[6]; // 只有1个数字时的结果
Arrays.fill(res, 1.0 / 6.0);
for (int i = 2; i <= num; ++i) {
double[] dp = new double[i * 5 + 1]; // 从i -> i * 6
for (int j = 0; j < res.length; ++j) {
for (int k = 0; k < 6; ++k) {
dp[j + k] += res[j] / 6.0;
}
}
res = dp;
}
return res;
}
}