1600:历届试题 连号区间数

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Alternative_19/article/details/79775180

Description

小明这些天一直在思考这样一个奇怪而有趣的问题:

在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:

如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。

当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

Input

第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。

第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。

Output

输出一个整数,表示不同连号区间的数目。

Sample Input

样例输入1
4
3 2 4 1

样例输入2
5
3 4 2 5 1

Sample Output

样例输出1
7

样例输出2
9
import java.util.*;
public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int i,j,cnt=0;
        int n=sc.nextInt();
        int []a=new int [n];
        
  
        for(i=0;i<n;i++)
        	a[i]=sc.nextInt();
        for(i=0;i<n;i++){
        	int max=a[i],min=a[i];
        	for(j=i;j<n;j++){
        		//本来的想法是b数组sort一下,后来发现不行,因为每次sort就要重新建数组,要不然以n为数组边界的话,前面没有涵盖的几个肯定都是0了
        		//b[j-i]=a[j];
        		if(a[j]>max)max=a[j];
        		if(a[j]<min)min=a[j];
        		if(max-min==j-i)
        			cnt++;
        	}
        }
        System.out.println(cnt);
        }
    
}

展开阅读全文

没有更多推荐了,返回首页