目录
DEPARA: Deep Attribution Graph for Deep Knowledge Transferability(cvpr2020 oral)
Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics
Self-supervised Learning of Interpretable Keypoints from Unlabelled Videos
Distilling Cross-Task Knowledge via Relationship Matching
Revisiting Knowledge Distillation via Label Smoothing Regularization
Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering
What Can Be Transferred: Unsupervised Domain Adaptation for Endoscopic Lesions Segmentation(cvpr2020)
Author:Jiahua Dong,..., Xiaowei Xu
问题:迁移的时候对所有信息同等对待,有些信息会损耗目标网络。how to automatically capture transferable visual characterizations and semantic representations while neglecting irrelevant knowledge across domains
- alternatively determine where and how to explore transferable domain-invariant knowledge。
- 模块1:残差转化模块 residual transferability-aware bottleneck is developed for TD to highlight where to translate transferable
visual information while preventing irrelevant translation。TD 不能保证俩domain的特征对齐。 个人觉得类似于风格迁移
- 模块2:Residual Attention on Attention Block (RA2B) is proposed to encode domain-invariant knowledge with high transferability scores, which assists TF in exploring how to augment transferable semantic features and boost the translation performance of module TD in return 用的Attention机制加强某些转化的特征
-
环结构,参数交替更新。Our model could be regarded as a closed loop to alternatively update the parameters of T D and TF

这篇博客主要探讨了CVPR2020会议上关于迁移学习和无监督领域适应的研究,包括如何自动捕捉可转移的视觉特性,忽略不相关知识,以及通过残差转换和注意力机制提升迁移性能。此外,还介绍了一种深度属性图用于深知识的可转移性,以及一种新的无监督领域适应方法,通过结构正则化的深度聚类实现。
最低0.47元/天 解锁文章
5495

被折叠的 条评论
为什么被折叠?



