Less is More: Simultaneous View Classifification and Landmark Detection for Abdominal Ultrasound Images
Author:Zhoubing Xu,..., Shaohua Zhou
idea:提出了一个多任务框架:1)超声视图分类,2)腹部长短抽的landmark detection

- 网络框架:
- Encoder:ResNet50。The first convolutional layer is modifified to take a single channel input. While the fifirst two residual blocks are shared across all tasks for low level feature extraction, two copies of the 3rd and 4th residual blocks are used, one for view classifification, and the other for landmark detection.
- On each level of skip connection between encode

这篇论文探讨了如何使用深度学习的多任务框架来同时进行腹部超声图像的视图分类和地标检测。作者提出了一种结合ResNet50编码器和全局卷积网络的架构,通过四个损失函数优化,包括交叉熵损失、回归损失、地标位置误差损失和一致性损失。此外,还介绍了一种全卷积神经网络在超声视频中精确检测测量点的方法,利用长短期记忆单元来改进当前帧的估计精度。
最低0.47元/天 解锁文章
6092

被折叠的 条评论
为什么被折叠?



