【论文研读】Data Augmentation, Network Invariances, Pre-training with Hard Examples

本文探讨了用于实例分割的简单复制粘贴数据增强技术,展示其对基线方法的显著提升。同时,介绍了神经网络中学习不变性的方法——Augerino,该方法能自动发现各种变换的不变性和等变性。此外,还讨论了一种通过创建难例进行自监督预训练的方法,以改进视觉表示。这些技术在图像分类、分割任务上表现优秀,并能与多种架构和损失函数兼容。
摘要由CSDN通过智能技术生成

目录

Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation (arxiv 2020.12)

Learning Invariances in Neural Networks (nips2020)

Self-supervised Pre-training with Hard Examples Improves Visual Representations (arxiv 2020.12)


 

Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation (arxiv 2020.12)

idea:

  • perform a systematic study of the Copy-Paste augmentation (e.g., [13, 12]) for instance segmentation where we randomly paste objects onto an image
  • we show Copy-Paste is additive with semi-supervised methods that leverage extra data through pseudo labeling (e.g. self-training).

Introduction:

  • a simple strategy of randomly picking objects and pasting them at random l
Autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems. By generating additional training data through data augmentation, the performance of deep learning models can be greatly improved. This is particularly important in wireless communication systems, where the availability of large amounts of labeled data is often limited. Autoencoder-based data augmentation techniques can be used to generate synthetic data that is similar to the real-world data. This can help to address the problem of overfitting, where the deep learning model becomes too specialized to the training data and performs poorly on new, unseen data. By increasing the diversity of the training data, the deep learning model is better able to generalize to new data and improve its performance. Furthermore, autoencoder-based data augmentation can also be used to improve the robustness of deep learning models to channel variations and noise. By generating synthetic data that simulates different channel conditions and noise levels, the deep learning model can be trained to be more resilient to these factors. This can result in improved performance in real-world wireless communication scenarios, where channel conditions and noise levels can vary widely. In conclusion, autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems by improving the performance and robustness of deep learning models.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值