【论文学习】零样本学习:Zero-Shot learning(2018CVPR)

本文探讨零样本学习(Zero-Shot Learning)的挑战,分析以往方法的不足,如特征表达能力有限、属性描述不充分及独立处理特征提取与嵌入空间构建。提出了一种新框架,包括图像特征网络、缩放网络和嵌入网络,共同训练以增强图像表征和语义区分。通过损失函数优化,实现更精准的类别区分。在AwA和CUB数据集上进行了实验验证。
摘要由CSDN通过智能技术生成

1、简介

见过和没见过的类别都要提供类别描述信息(比如用户定义的属性标注、类别的文本描述、类别名的词向量等);某些描述信息是各个类别共有的。这些描述信息通常被称为辅助信息或语义表征。

典型 ZSL 方法的一个通用假设是:存在一个共有的嵌入空间,其中有一个映射函数:

定义这个函数的目的是对于见过或没见过的类别,衡量图像特征 φ(x) 和语义表征 ψ(y) 之间的相容性(compatibility)。W 是所要学习的视觉-语义映射矩阵

 

2、以往工作的缺陷

到目前为止,映射矩阵 W 的学习(尽管对 ZSL 很重要)的主要推动力是视觉空间和语义空间之间对齐损失的最小化。但是,ZSL 的最终目标是分类未见过的类别。因此,视觉特征 φ(x) 和语义表征 ψ(y) 应该可以被区分开以识别不同的目标。不幸的是,这个问题在 ZSL 领域一直都被忽视了,几乎所有方法都遵循着同一范式:1)通过人工设计或使用预训练的 CNN 模型来提取图像特征;2)使用人类设计的属性作为语义表征。这种范式存在一些缺陷:

第一,图像特征 φ(x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值