Always_ease
码龄7年
关注
提问 私信
  • 博客:143,320
    143,320
    总访问量
  • 93
    原创
  • 469,154
    排名
  • 78
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2018-05-22
博客简介:

Always_ease的博客

查看详细资料
个人成就
  • 获得68次点赞
  • 内容获得88次评论
  • 获得268次收藏
  • 代码片获得274次分享
创作历程
  • 4篇
    2021年
  • 17篇
    2020年
  • 13篇
    2019年
  • 66篇
    2018年
成就勋章
TA的专栏
  • 人工智能
    7篇
  • 论文研读
    24篇
  • 代码学习笔记
    9篇
  • 随笔
    4篇
  • 机考刷题
    26篇
  • dp
    27篇
  • Tool
    3篇
兴趣领域 设置
  • 人工智能
    深度学习神经网络pytorch图像处理
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ITunes 操作

批量删除无效文件新建播放列表,名字All 将所有音乐拖到All 新建智能播放列表Delete(规则如下图) 删除Delete中所有的歌曲
原创
发布博客 2021.10.30 ·
207 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Federated Learning 联邦学习概述及最新工作

一、目前主流的联邦学习应用场景 Cross-silo FL Cross-device FL Setting Training a model on siloed data. Clients are from different organizations (e.g. medical or financial) or geo-distributed datacenters. The cli.
原创
发布博客 2021.06.15 ·
1590 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏

Jordan矩阵,矩阵指数函数,李群

Jordan 矩阵用于判断两个矩阵是否相似。判定两个矩阵是否相似不是件容易的事,即使他们有相同的特征多项式、迹和行列式,他们仍然可能不相似。那么我们的想法是:如果能将给定的两个矩阵A,B通过相似性转换成同一类矩阵,那么他们必然是相似的。而由于种种原因直接寻找对角矩阵或者上三角矩阵在实际操作中都或多或少有一些问题,因此我们的想法是:寻找介于对角矩阵和上三角矩阵之间的一类矩阵,这就是Jordan矩阵概念介绍:https://zhuanlan.zhihu.com/p/132622172矩阵的指数函
原创
发布博客 2021.01.12 ·
1586 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

【论文研读】Data Augmentation, Network Invariances, Pre-training with Hard Examples

Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation (arxiv 2020.12)idea:perform a systematic study of the Copy-Paste augmentation (e.g., [13, 12]) for instance segmentation where we randomly paste objects onto an image we
原创
发布博客 2021.01.03 ·
313 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【持续更】python语法总结

一、矩阵、列表操作1、获得矩阵索引值idx = np.argwhere(z>10)2、删除列表删除指定位置:delL[0]xi = list(L).remove('string')3、按行删除矩阵idx = np.argwhere(a < 0) # delete <0 dataa = np.delete(a, idx[:, 0], 0)...
原创
发布博客 2020.12.18 ·
159 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文研读】 两篇公众号文章;Test-Time Training;超分Domain Adaptive

测试集没有标签,我们可以拿来测试模型吗?Paper Link:https://arxiv.org/abs/2007.02915重点研究自动模型评估(AutoEval)这一重要的且尚未开发的问题。具体来说,给定带标签的训练集和分类器,我们需要估计出分类器在未标记的测试数据集上的分类准确性。 方法的出发点:测试集合和训练集合数据分布差异越大,那么分类器在测试集合上的准确率就会越低。 采用回归模型:输入为一个测试集与数据分布差异相关的特征(如均值和协方差),输出为分类器在其上的准确率。 构造元数据集
原创
发布博客 2020.12.18 ·
1903 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

【论文研读】Similarity of Neural Network Representations Revisited (ICML2019)

Title:Similarity of Neural Network Representations Revisited (ICML2019)Author:Simon Kornblith ...(Long Beach, California)目录Aim:invariance properties of similarity indexes 分为三个方面Comparing Similarity StructuresRelated Similarity IndexesResults.
原创
发布博客 2020.12.09 ·
1990 阅读 ·
2 点赞 ·
3 评论 ·
4 收藏

cv2 边缘识别、膨胀腐蚀、求最小包围矩阵

img_src = cv2.imread("cs1.jpg")# erodekernel = np.ones((3, 3),np.uint8)img_src = cv2.dilate(img_src ,kernel)img_src = cv2.erode(img_src, kernel)# find contourimg_contour, contours, hierarchy = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APP.
原创
发布博客 2020.12.01 ·
762 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

ECCV 2020 workshop self-supervision note

Self Supervised Learning: What is Next?一、Perspectives on Unsupervised Representation LearningSimCLR seems to benefit from deep models and long training more than SL how we handle the weight initialization may play a big role in the final features We
原创
发布博客 2020.11.02 ·
245 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

【论文研读】Ultrasound related paper (multi-task, detection)

Less is More: Simultaneous View Classifification and Landmark Detection for AbdominalUltrasound ImagesAuthor:Zhoubing Xu,...,Shaohua Zhouidea:提出了一个多任务框架:1)超声视图分类,2)腹部长短抽的landmark detection网络框架: Encoder:ResNet50。The first convolutional layer is m..
原创
发布博客 2020.08.31 ·
337 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Self-supervised and unsupervised learning for video

ActBERT: Learning Global-Local Video-Text Representations(cvpr2020)背景:在教做菜的视频中,视频创作者会描述,“开始切胡萝卜”,往往人物也是在正进行“切胡萝卜”的动作。这种天然的视觉对应关系,是进行视频文字自监督学习的重要要素。其中文字描述可以通过自动语音识别技术(ASR)从视频中或从创作者上传的字幕中提取文字。这样成对的视频文字数据就产生了。 为了解决视觉特征无法做分类预测的问题,VideoBERT 使用了 hierachica.
原创
发布博客 2020.08.10 ·
770 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

图像特征提取:局部二值模式(LBP)

一、LBP算子  局部二值模式是一种灰度范围内的非参数描述子,具有对灰度变化不敏感且计算速度快等优点[1].LBP算子利用中心像素的领域像素与中心像素的比较结果进行编码。常见的LBP_{P,R}模式有: P,R分别代表领域像素点的个数和领域半径,上图所示分别为8点半径为1;16点半径为2;8点半径为2的模式。  LBP算子计算实例如下:从左上角开始,沿顺时针方向依次与中心像素进行比较,如果大于等于中心像素的取值为1,否则为0.得到一个01序列,我们视为一个二进制数。将二进制数转化...
转载
发布博客 2020.08.10 ·
1513 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

【论文研读】Obscuring Surface Anatomy + Detection of Wrong-Patient when Include Patient Photographs

Obscuring Surface Anatomy in Volumetric Imaging DataAuthor: Mikhail Milchenko and Daniel Marcusidea: we developed a method of anatomical surface modification and investigated the effects of such modification on image statistics and common neuroimaging
原创
发布博客 2020.08.04 ·
252 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文研读】Self-supervised、unsupervised learning (2020最新论文)

Are Labels Necessary for Neural Architecture SearchAuthor:Chenxi Liu ,...,Kaiming He(Facebook AI)发现: the architecture rankings produced with and without labels are highly correlated.NAS和UnNAS的结果具有高度相关性 using unlabeled images from a large d..
原创
发布博客 2020.07.16 ·
2280 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

论文研读:CVPR2020 相关文章

What Can Be Transferred: Unsupervised Domain Adaptation forEndoscopic Lesions Segmentation(cvpr2020)Author:Jiahua Dong,...,Xiaowei Xu问题:迁移的时候对所有信息同等对待,有些信息会损耗目标网络。how to automatically capture transferable visual characterizations and semantic represe..
原创
发布博客 2020.06.20 ·
1198 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

Overleaf summit to arxiv 步骤详解

最近刚好遇到这个问题,在此记录。1. 点击overleaf项目中的summit;选择arxiv,下载zip文件2. 解压zip文件,将中间的png转化为pdf,别忘了main.tex中也要改!我用的转化工具网页:https://png2pdf.com/zh/3. 打开Main.tex,把\bibliographystyle{IEEEtran}\bibliography{IEEEabrv,refer}变成:\input{Main.bbl}\bibliographysty
原创
发布博客 2020.05.29 ·
2559 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

【系列论文研读】Semi-supervised learning:VAT,TEM,S4L,UDA

一、Virtual Adversarial Training (VAT)原文:Virtual adversarial training: a regularization method for supervised and semi-supervised learning.(2018PAMI)作者:T. Miyato, S.-i. Maeda (Kyoto University, Kyot...
原创
发布博客 2020.03.31 ·
1874 阅读 ·
0 点赞 ·
5 评论 ·
8 收藏

【论文研读】Self-supervised:AMDIM, DIM

Title:Learning deep representations by mutual information estimation and maximization(2019ICLR)Author:R Devon Hjelm(MSR Montreal)Method:主要使用最大化互信息的思想,同一张图的局部特征和全局特征应高度相关,另一张的局部特征不相关。采用NCEloss得到s...
原创
发布博客 2020.02.20 ·
3871 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【论文研读】SimCLR Google2020.2提出最新自监督方法

Title:A Simple Framework for Contrastive Learning of Visual RepresentationsAuthor:Ting Chen, Geoffrey Hinton... (Google Research)参考:Hinton组力作:ImageNet无监督学习最佳性能一次提升7%,媲美监督学习网络结构Data aug...
原创
发布博客 2020.02.19 ·
5344 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

新冠肺炎的诊断与临床症状

病毒机理:S蛋白与人体敏感细胞的表面受体ACE2结合,后者介导病毒进入靶细胞进一步复制 covid-19肺炎的机理是过激的免疫反应制造的大量自由基引起的器官损伤 病毒入侵后免疫系统反击,巨噬细胞、中性粒细胞释放出大量自由基,与细胞的蛋白、DNA反应使细胞死亡,导致器官损害 血清细胞因子水平较高,提示可能发生细胞因子风暴。病变早期病理表现:水肿、带球状的蛋白质渗出物 少...
原创
发布博客 2020.02.18 ·
3442 阅读 ·
0 点赞 ·
2 评论 ·
3 收藏
加载更多