kafka Kafka JAVA客户端代码示例

转载:http://my.oschina.net/cloudcoder/blog/299215
感谢!
介绍
     http://kafka.apache.org 
    kafka是一种高吞吐量的分布式发布订阅消息系统 
    kafka是linkedin用于日志处理的分布式消息队列,linkedin的日志数据容量大,但对可靠性要求不高,其日志数据主要包括用户行为(登录、浏览、点击、分享、喜欢)以及系统运行日志(CPU、内存、磁盘、网络、系统及进程状态) 


    当前很多的消息队列服务提供可靠交付保证,并默认是即时消费(不适合离线)。 
高可靠交付对linkedin的日志不是必须的,故可通过降低可靠性来提高性能,同时通过构建分布式的集群,允许消息在系统中累积,使得kafka同时支持离线和在线日志处理


测试环境
    kafka_2.10-0.8.1.1 3个节点做的集群
    zookeeper-3.4.5 一个实例节点


代码示例
消息生产者代码示例


import java.util.Collections;
import java.util.Date;
import java.util.Properties;
import java.util.Random;
 
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
 
/**
 * 详细可以参考:https://cwiki.apache.org/confluence/display/KAFKA/0.8.0+Producer+Example
 * @author Fung
 *
 */
public class ProducerDemo {
    public staticvoid main(String[] args) {
        Random rnd = newRandom();
        intevents=100;
 
        // 设置配置属性
        Properties props = newProperties();
        props.put("metadata.broker.list","172.168.63.221:9092,172.168.63.233:9092,172.168.63.234:9092");
        props.put("serializer.class","kafka.serializer.StringEncoder");
        // key.serializer.class默认为serializer.class
        props.put("key.serializer.class","kafka.serializer.StringEncoder");
        // 可选配置,如果不配置,则使用默认的partitioner
        props.put("partitioner.class","com.catt.kafka.demo.PartitionerDemo");
        // 触发acknowledgement机制,否则是fire and forget,可能会引起数据丢失
        // 值为0,1,-1,可以参考
        // http://kafka.apache.org/08/configuration.html
        props.put("request.required.acks","1");
        ProducerConfig config = newProducerConfig(props);
 
        // 创建producer
        Producer<String, String> producer = newProducer<String, String>(config);
        // 产生并发送消息
        longstart=System.currentTimeMillis();
        for(longi = 0; i < events; i++) {
            longruntime = newDate().getTime();
            String ip = "192.168.2."+ i;//rnd.nextInt(255);
            String msg = runtime + ",www.example.com,"+ ip;
            //如果topic不存在,则会自动创建,默认replication-factor为1,partitions为0
            KeyedMessage<String, String> data = newKeyedMessage<String, String>(
                    "page_visits", ip, msg);
            producer.send(data);
        }
        System.out.println("耗时:"+ (System.currentTimeMillis() - start));
        // 关闭producer
        producer.close();
    }
}
消息消费者代码示例


import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
 
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
 
/**
 * 详细可以参考:https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example
 *
 * @author Fung
 *
 */
public class ConsumerDemo {
    private finalConsumerConnector consumer;
    private finalString topic;
    private ExecutorService executor;
 
    public ConsumerDemo(String a_zookeeper, String a_groupId, String a_topic) {
        consumer = Consumer.createJavaConsumerConnector(createConsumerConfig(a_zookeeper,a_groupId));
        this.topic = a_topic;
    }
 
    public void shutdown() {
        if(consumer != null)
            consumer.shutdown();
        if(executor != null)
            executor.shutdown();
    }
 
    public void run(intnumThreads) {
        Map<String, Integer> topicCountMap = newHashMap<String, Integer>();
        topicCountMap.put(topic,newInteger(numThreads));
        Map<String, List<KafkaStream<byte[],byte[]>>> consumerMap = consumer
                .createMessageStreams(topicCountMap);
        List<KafkaStream<byte[],byte[]>> streams = consumerMap.get(topic);
 
        // now launch all the threads
        executor = Executors.newFixedThreadPool(numThreads);
 
        // now create an object to consume the messages
        //
        intthreadNumber = 0;
        for(finalKafkaStream stream : streams) {
            executor.submit(newConsumerMsgTask(stream, threadNumber));
            threadNumber++;
        }
    }
 
    private static ConsumerConfig createConsumerConfig(String a_zookeeper,
            String a_groupId) {
        Properties props = newProperties();
        props.put("zookeeper.connect", a_zookeeper);
        props.put("group.id", a_groupId);
        props.put("zookeeper.session.timeout.ms","400");
        props.put("zookeeper.sync.time.ms","200");
        props.put("auto.commit.interval.ms","1000");
 
        returnnewConsumerConfig(props);
    }
 
    public static void main(String[] arg) {
        String[] args = { "172.168.63.221:2188","group-1","page_visits","12"};
        String zooKeeper = args[0];
        String groupId = args[1];
        String topic = args[2];
        intthreads = Integer.parseInt(args[3]);
 
        ConsumerDemo demo = newConsumerDemo(zooKeeper, groupId, topic);
        demo.run(threads);
 
        try{
            Thread.sleep(10000);
        }catch(InterruptedException ie) {
 
        }
        demo.shutdown();
    }
}
消息处理类


import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
 
public class ConsumerMsgTask implementsRunnable {
    privateKafkaStream m_stream;
    privateintm_threadNumber;
 
    public ConsumerMsgTask(KafkaStream stream, intthreadNumber) {
        m_threadNumber = threadNumber;
        m_stream = stream;
    }
 
    public void run() {
        ConsumerIterator<byte[],byte[]> it = m_stream.iterator();
        while(it.hasNext())
            System.out.println("Thread " + m_threadNumber + ": "
                    +newString(it.next().message()));
        System.out.println("Shutting down Thread: " + m_threadNumber);
    }
}
Partitioner类示例


import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties;
 
public classPartitionerDemo implements Partitioner {
    public PartitionerDemo(VerifiableProperties props) {
 
    }
 
    @Override
    publicintpartition(Object obj, intnumPartitions) {
        intpartition = 0;
        if(objinstanceofString) {
            String key=(String)obj;
            intoffset = key.lastIndexOf('.');
            if(offset > 0) {
                partition = Integer.parseInt(key.substring(offset + 1)) % numPartitions;
            }
        }else{
            partition = obj.toString().length() % numPartitions;
        }
         
        returnpartition;
    }
 
}
pom.xml文件


<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
 
    <groupId>com.xxx</groupId>
    <artifactId>kafka-demo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <packaging>jar</packaging>
 
    <name>kafka-demo</name>
    <url>http://maven.apache.org</url>
 
    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>
 
    <dependencies>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.10</artifactId>
            <version>0.8.1.1</version>
            <exclusions>
                <exclusion>
                    <artifactId>jmxtools</artifactId>
                    <groupId>com.sun.jdmk</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>jmxri</artifactId>
                    <groupId>com.sun.jmx</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>jms</artifactId>
                    <groupId>javax.jms</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.15</version>
            <exclusions>
                <exclusion>
                    <artifactId>jmxtools</artifactId>
                    <groupId>com.sun.jdmk</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>jmxri</artifactId>
                    <groupId>com.sun.jmx</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>jms</artifactId>
                    <groupId>javax.jms</groupId>
                </exclusion>
                <exclusion>
                    <artifactId>mail</artifactId>
                    <groupId>javax.mail</groupId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.11</version>
            <scope>test</scope>
        </dependency>
    </dependencies>
</project>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值