luke使用

转自:http://hi.baidu.com/thinke365/blog/item/3ea7b859453b738b800a18d1.html

首次用Luke打开索引文件。Overview里面显示了索引具有的Field数目(以最大的Field为准吧?),还有就是文档的总数和 Term即索引词的总数? 有时一个关键词,对应于多个文档,所以文档数要多于关键字数目。

还显示了索引的版本和索引的格式。 类似于Java class的格式做法,在文件头部放了对应的Lucene版本信息吧。。。

右下方的Rank是怎么算出来的?事实上我并没有做什么操作啊。。。

luke使用 - bension8708 - bension8708的博客

在Document视图,根据doc号,查看具体的文档项,这个功能不错。

luke使用 - bension8708 - bension8708的博客

通过Document标签可以查看各个Term,点击show All,会进入search页面,显示使用term查询,匹配的所有记录。 这里的term就相当于 查询关键字吧。。。

luke使用 - bension8708 - bension8708的博客

Luke的查询结果和直接的代码查询结果是一致的。。。

这个功能赞的。通过luke就可以直接研究索引文件里面的内容了。。。。。

luke使用 - bension8708 - bension8708的博客

luke使用 - bension8708 - bension8708的博客

在查询标签,选择分词器。。。。点击查询就可以查了。。。 这里选择的是CJK分词器,针对东亚文字的分析器。。。

luke使用 - bension8708 - bension8708的博客

luke使用 - bension8708 - bension8708的博客

使用同一个数据源,现在搜到的东西是一样了,呵呵...

luke使用 - bension8708 - bension8708的博客

luke使用 - bension8708 - bension8708的博客

在Search标签页里,点击Explain structure,可以看到对查询字符串的分词结果。。。.

(在查询输入框)更新查询字符串之后,需要点击update,才会更新下面的字符。。。

luke使用 - bension8708 - bension8708的博客

luke使用 - bension8708 - bension8708的博客

Term对应的各个文档,这里相当于是遍历列表?从头到尾的遍历?也可以show all,这会跳转到Search标签。。也可以点击Show Position显示文档的位置信息。 这里的term frequency是指 term在文档中的出现次数。只有Show all,才会触发Search,并跳转到Search标签。

如下操作序列挺有意思的。 首先点击Next term,转到下一个Term,再点击First Doc,显示该Term的第一个Document。

luke使用 - bension8708 - bension8708的博客

luke使用 - bension8708 - bension8708的博客

同个Term对应的文档也是排序的? 这里根据Document之后的数字排列了,至少从截图上看起来是这样的。

luke使用 - bension8708 - bension8708的博客

luke使用 - bension8708 - bension8708的博客

Tool菜单栏里有个Check Index选项:

如下是我对当前操作索引的check操作。。。

Segments file=segments_2 numSegments=1 version=FORMAT_HAS_PROX [Lucene 2.4]

1 of 1: name=_0 docCount=153090

    compound=true

    hasProx=true

    numFiles=1

    size (MB)=17.396

    no deletions

    test: open reader.........OK

    test: fields, norms.......OK [2 fields]

    test: terms, freq, prox...OK [88735 terms; 559179 terms/docs pairs; 563003 tokens]

    test: stored fields.......OK [306180 total field count; avg 2 fields per doc]

    test: term vectors........OK [0 total vector count; avg 0 term/freq vector fields per doc]

No problems were detected with this index.OverView里面的show top terms,显示的是 对应document数目最多的term。。。

可以通过Luke查看文档评分机制的。。。

numDocs是文档总数,docFreq是匹配这个term的文档总数。 idf是定义在这两个量之上的吧。。。。

queryNorm和fieldNorm是怎么算出来的?

luke使用 - bension8708 - bension8708的博客

打开索引时,选择载入内存,速度会快很多。。。

luke使用 - bension8708 - bension8708的博客

转发至微博

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值