题意:
从出发点到目的地往返一次,道路i连接着ai号和bi号,长度为ci。同一条路只能走一次,求最小路径长度。
分析:
如果没有往返,那么就是简单的最短路问题。如果规定严格从左到右,那么就是简单的双调旅行商问题。对于本题,同样还是将往返看成是从出发地开始的两条没有公共边的路径,便可以转化为求流量为2的最小费用流了~注意边为无向边
代码:
#include<cstdio>
#include<vector>
#include<iostream>
#include<queue>
using namespace std;
#define se second
#define fi first
typedef pair<int, int>pii;//first 顶点距离,secon顶点编号
struct edge{int to, cap, cost, rev;};
const int maxn = 20005, INF =0x3fffffff;
int V, s, t;
vector<edge>G[maxn];
int dist[maxn], prevv[maxn], preve[maxn], h[maxn];//h记录顶点的势
void add_edge(int from, int to, int cap, int cost)
{
G[from].push_back((edge){to, cap, cost, G[to].size()});
G[to].push_back((edge){from, 0, -cost, G[from].size() - 1});
}
int min_cost_flow(int s, int f)
{
int res = 0;
fill(h, h + V + 1, 0);
while(f > 0){
priority_queue<pii, vector<pii>, greater<pii> >que;
fill(dist, dist + V + 1, INF);
dist[s] = 0;
que.push(pii(0, s));
while(!que.empty()){
pii p = que.top();que.pop();
int v = p.se;
if(dist[v] < p.fi) continue;
for(int i = 0; i < G[v].size(); i++){
edge &e = G[v][i];
if(e.cap>0&&dist[e.to]>dist[v] + e.cost + h[v] - h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v; preve[e.to] = i;
que.push(pii(dist[e.to], e.to));
}
}
}
if(dist[t] == INF) return -1;
for(int i = 1; i <= V; i++) h[i] +=dist[i];
int d = f;
for(int v = t; v != s; v = prevv[v]){
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for(int v = t; v!= s; v = prevv[v]){
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main (void)
{
int m;scanf("%d%d",&V, &m);
int a, b, c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a, &b, &c);
add_edge(a, b, 1, c);
add_edge(b, a, 1, c);
}
s = 1, t = V;
printf("%d\n",min_cost_flow(s,2));
}