题目链接:
http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=21269
题意:
求平面最近点对。
分析:
经典问题。
n比较大,直接枚举不可。
与上一道的树分治类似,我们也可以将点按照x坐标分成两类。
假设把所有点按照x坐标分成两类,那么有如下两种情况:
- 点p,q同属于左半边
- 点p,q一个属于左边一个属于右边
同样,对于第一种情况我们采用递归即可求解。
对于第二种情况,由于已经知道第一种情况下的最小距离d,所以我们只需考虑到划分的直线(x坐标为x0)的距离小于d的点,即坐标满足x0−d<x<x0+d,而对于y坐标,每个点只需考虑y坐标比自己大的,且相差不超过d的点即可。
代码:
#include<iostream>
#include<algorithm>
#include<vector>
#include<cmath>
#include<cstdio>
using namespace std;
#define x first
#define y second
typedef pair<double, double>p;
const int maxn = 1e4 + 5, oo = 0x3f3f3f3f;
int n;
double eps = 1e-8;
p a[maxn];
bool cmp(p a, p b){return a.y < b.y;}
double solve(p* a, int n)
{
if(n <= 1) return oo;
int m = n / 2;
double xx = a[m].x;
double d = min(solve(a, m), solve(a + m, n - m));
vector<p>b;
for(int i = 0; i < n; i++){
if(fabs(a[i].x - xx) <= d) b.push_back(a[i]);
}
sort(b.begin(), b.end(), cmp);
for(int i = 0; i <b.size(); i++){
for(int j = i + 1; j < b.size(); j++){
double dx = b[j].x - b[i].x;
double dy = b[j].y - b[i].y;
if(dy - d >= eps) break;
d = min(d, sqrt(dx * dx + dy * dy));
}
}
return d;
}
int main (void)
{
while(scanf("%d", &n) && n){
double aa, bb;
for(int i = 0 ; i < n; i++){
scanf("%lf%lf", &aa, &bb);
a[i] = p(aa, bb);
}
sort(a, a + n);
double ans = solve(a, n);
if(ans - 1e4 > eps) printf("INFINITY\n") ;
else printf("%.4f\n", ans);
}
return 0;
}