【YOLOv8系列】在Windows上从零搭建YOLOv8图像算法运行环境--by Anaconda(包括各种遇到的问题及解决方法)

最近需要使用YOLOv8实现图像识别的功能,因此记录一下环境搭建的整个过程,本文记录的是通过Anaconda的方式搭建该环境,期间遇到了一些环境配置上的问题,也详细记录了解决过程。
遇到的问题主要有:

1、AttributeError: partially initialized module 'charset_normalizer' has no attribute 'md__mypyc' (most likely due to a circular import

2、pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.
3、Anaconda\envs\y8work\lib\site-packages\requests\__init__.py:86: RequestsDependencyWarning: Unable to find acceptable character detection dependency (chardet or charset_normalizer). warnings.warn(

4、Could not fetch URL https://pypi.org/simple/requests/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host='pypi.org', port=443): Max retries exceeded with url: /simple/requests/ (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1135)'))) - skipping ERROR: Could not find a version that satisfies the requirement charset-normalizer<4,>=2 (from requests) (from versions: none) ERROR: No matching distribution found for charset-normalizer<4,>=2

5、ModuleNotFoundError: No module named 'requests'

安装过程参考:

一文了解YOLOv8(附带各种任务详细说明链接):计算机视觉领域的新星

2024最新的YOLOv8安装配置全流程,人人都可以学会的图像识别技术指南

要在Windows 10上安装YOLOv8(You Only Look Once,一种流行的物体检测算法),你需要遵循几个步骤来设置Python环境、安装依赖库和YOLOv8本身。这里是一个简要的安装指南: 1. **安装Python**: - 确保已安装Python 3.6或更高版本。你可以从Python官网下载并安装:https://www.python.org/downloads/ 2. **配置Anaconda或Miniconda**: - 如果你还没有,建议使用Anaconda或Miniconda来管理环境。它们提供了方便的包管理工具。安装完成后,激活一个新的环境: ``` conda create --name yolov8 python=3.7 conda activate yolov8 ``` 3. **安装必要的库**: - 使用`conda`安装TensorFlow和pip(如果Anaconda默认没有): ``` conda install tensorflow conda install pip ``` - 使用pip安装YOLOv8及其依赖: ``` pip install torch torchvision Cython pillow pip install https://github.com/ultralytics/yolov5/releases/download/v8.0/yolov8- Windows用户可能需要通过编译源码的方式安装Darknet,因为预编译的二进制文件可能不包含YOLOv8模型。访问Darknet官网获取最新版本:https://github.com/AlexeyAB/darknet - 下载源码后,在命令行中切换到Darknet目录并执行编译: ``` make ``` 这会生成darknet.exe和相关的DLL文件。 5. **下载预训练模型**: - YOLOv8可能有自己的预训练权重,可以从GitHub仓库下载。例如,可以访问`https://github.com/ultralytics/yolov5/releases`找到下载链接。 6. **验证安装**: - 在Python环境运行YOLOv8示例代码,检查是否能正常工作: ``` python -m torch.distributed.launch --nproc_per_node=1 yolov8-train.py --data /path/to/coco.yaml ``` 记得替换上述命令中的路径为实际数据集路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乘凉~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值