哈哈哈,高中数学拿来讲一讲,数学概念不拿到实际应用,很难快速理解
1.对数基本定义
对数是指数运算的逆运算。如果我们有一个指数方程:
那么 b 就是 c 对 a 的对数,记作:
举例:

换句话说,对数回答了“给定一个底数 a,多少次乘法可以得到 c”这个问题。
下面举一个具体算法理解对数,之后就能更好的理解有些算法时间复杂度是怎么算的了
2.为什么二分查找的时间复杂度是 O(
)?
二分查找的过程就是每次将搜索空间缩小一半,直到找到目标值或确定目标值不存在。
假设我们有一个长度为 n 的有序数组。每次查找时,数组的大小缩小一半,即我们从 n 变成 n/2,然后 n/4,n/8,依此类推,直到只剩下一个元素(大小为1)。
这个缩小过程持续了多少次呢?我们可以通过下面的等式来表示这个过程:
其中,k 是二分查找的步骤数。
解这个方程:
![]()
取对数:

因此,k(即二分查找的步骤数)就是 log₂(n),这意味着二分查找的时间复杂度为 O(log n)。
直观理解
假设你有一本 1000 页的书,并且想找到特定的一页。如果你每次查找都从书的中间开始,每次都把剩下的页数减半:
- 第一步:从 1000 页缩小到 500 页。
- 第二步:从 500 页缩小到 250 页。
- 第三步:从 250 页缩小到 125 页。
- …… 如此下去,你总共大约需要 log₂(1000) 步来找到那一页(查询次数最多的情况,因为时间复杂度算的就是最多的情况下所需的时间),约为 10 步。
随着数据规模的增大,对数增长比线性增长(如 O(n))慢得多。这就是为什么二分查找非常高效的原因。

被折叠的 条评论
为什么被折叠?



